The Importance of Overburden and Pore Pressure on Horizontal Stress Magnitude Determination; an Example from the Delaware Basin

Author(s):  
Kristen Kozlowski ◽  
Melia Da Silva ◽  
David Brown ◽  
Jack Taylor ◽  
Heather Willems ◽  
...  
2021 ◽  
Author(s):  
Ahmed E. Radwan ◽  
Souvik Sen

Abstract The purpose of this study is to evaluate the reservoir geomechanics and stress path values of the depleted Miocene sandstone reservoirs of the Badri field, Gulf of Suez Basin, in order to understand the production-induced normal faulting potential in these depleted reservoirs. We interpreted the magnitudes of pore pressure (PP), vertical stress (Sv), and minimum horizontal stress (Shmin) of the syn-rift and post-rift sedimentary sequences encountered in the studied field, as well as we validated the geomechanical characteristics with subsurface measurements (i.e. leak-off test (LOT), and modular dynamic tests) (MDT). Stress path (ΔPP/ΔShmin) was modeled considering a pore pressure-horizontal stress coupling in an uniaxial compaction environment. Due to prolonged production, The Middle Miocene Hammam Faraun (HF) and Kareem reservoirs have been depleted by 950-1000 PSI and 1070-1200 PSI, respectively, with current 0.27-0.30 PSI/feet PP gradients as interpreted from initial and latest downhole measurements. Following the poroelastic approach, reduction in Shmin is assessed and reservoir stress paths values of 0.54 and 0.59 are inferred in the HF and Kareem sandstones, respectively. As a result, the current rate of depletion for both Miocene reservoirs indicates that reservoir conditions are stable in terms of production-induced normal faulting. Although future production years should be paid more attention. Accelerated depletion rate could have compelled the reservoirs stress path values to the critical level, resulting in depletion-induced reservoir instability. The operator could benefit from stress path analysis in future planning of infill well drilling and production rate optimization without causing reservoir damage or instability.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. B353-B361 ◽  
Author(s):  
Colin M. Sayers ◽  
Sagnik Dasgupta ◽  
Adam Koesoemadinata ◽  
Michael Shoemaker

Production from wells in organic-rich shales often shows considerable lateral variation. Reliable predrill methods to characterize the lateral heterogeneity of such reservoirs are required to optimize the trajectory of lateral wells in these low-permeability reservoirs. Petrophysical interpretation of measured well logs provides information on mineral, porosity, and kerogen content. Combining the results of petrophysical analysis with P-wave, S-wave, and density logs allows generation of a probability density function (PDF) for each of the different significant lithofacies. The PDFs are applied to the P- and S-impedance from prestack seismic amplitude variation with offset inversion to predict the spatial variation in the distribution of lithofacies and associated probability for the Wolfcamp Formation in an area covered by a 3D seismic survey in the Delaware Basin, West Texas. An anisotropic rock-physics model for the Wolfcamp Formation allows the effect of complex mineralogy, organic carbon concentration, and porosity on the P- and S-impedance to be investigated. Kerogen inclusions and pores act to increase Thomsen’s anisotropy parameter [Formula: see text] relative to [Formula: see text], and there is a competition between clay matrix anisotropy and inclusion shape anisotropy in determining the anisotropy of the rock. Inclusions with isotropic elastic properties act to decrease the anisotropy due to the dilution effect, but this decrease is partially offset by the increase in anisotropy due to the anisotropic shape of the inclusions. Application of the model to the determination of minimum horizontal stress indicates that kerogen-rich siliceous shales have the lowest value of minimum horizontal stress, whereas silica-rich calcareous shales, mixed siliceous shales, and clay-rich siliceous shales have higher values and may therefore act as barriers for the vertical growth of hydraulic fractures.


2000 ◽  
Vol 3 (05) ◽  
pp. 394-400 ◽  
Author(s):  
M. Khan ◽  
L.W. Teufel

Summary Reservoir stress path is defined as the ratio of change in effective horizontal stress to the change in effective vertical stress from initial reservoir conditions during pore-pressure drawdown. Measured stress paths of carbonate and sandstone reservoirs are always less than the total stress boundary condition (isotropic loading) and are either greater or less than the stress path predicted by the uniaxial strain boundary condition. Clearly, these two boundary-condition models that are commonly used by the petroleum industry to calculate changes in effective stresses in a reservoir and to measure reservoir properties in the laboratory are inaccurate and can be misleading if applied to reservoir management problems. A geomechanical model that incorporates geologic and geomechanical parameters was developed to more accurately predict the reservoir stress path. Numerical results show that reservoir stress path is dependent on the size and geometry of the reservoir and on elastic properties of the reservoir rock and bounding formations. In general, stress paths become lower as the aspect ratio of reservoir length to thickness increases. Lenticular sandstone reservoirs have a higher stress path than blanket sandstone reservoirs that are continuous across a basin. This effect is enhanced when the bounding formations have a lower elastic modulus than the reservoir and when the reservoir is transversely isotropic. In addition, laboratory experiments simulating reservoir depletion for different stress path conditions demonstrate that stress-induced permeability anisotropy evolves during pore-pressure drawdown. The maximum permeability direction is parallel to the maximum principal stress and the magnitude of permeability anisotropy increases at lower stress paths. Introduction Matrix permeability and pore volume compressibility are fundamentally important characteristics of hydrocarbon reservoirs because they provide measures of reservoir volume and reservoir producibility. Laboratory studies have shown that these properties are stress sensitive and are usually measured under hydrostatic (isotropic) loads that do not truly reflect the anisotropic stress state that exists in most reservoirs and do not adequately simulate the evolution of deviatoric stresses in a reservoir as the reservoir is produced. Recent laboratory studies1–3 have shown that permeability and compressibility are dependent on the deviatoric stress and change significantly with reservoir stress path. In-situ stress measurements in carbonate and clastic reservoirs indicate that the reservoir stress path is not isotropic loading (equal to 1.0) and can range from 0.14 to 0.76. 4 The measured reservoir stress paths are also inconsistent with the elastic uniaxial strain model5 commonly used to calculate horizontal stress and changes in horizontal stress with pore-pressure drawdown. The calculated uniaxial strain stress path can be significantly less or greater than the measured stress path.4 Knowledge of the stress path that reservoir rock will follow during production and how this stress path will affect reservoir properties is critical for reservoir management decisions necessary to increase reservoir producibility. However, in-situ stress measurements needed to determine reservoir stress path are difficult and expensive to conduct, and may take several years to collect. Various analytical models have been proposed to calculate in-situ horizontal stresses and they could be applied to the prediction of reservoir stress path during pore-pressure drawdown.5–9 However, none of these models addresses all of the essential geological and geomechanical factors that influence reservoir stress path, such as reservoir size and geometry or the coupled mechanical interaction between the reservoir and the bounding formations. Accordingly, a geomechanical model was developed to more accurately predict reservoir stress path. The model incorporates essential geological and geomechanical factors that may control reservoir stress path during production. In addition, laboratory results showing the effect of reservoir stress path on permeability and permeability anisotropy in a low-permeability sandstone are also presented. These experiments clearly demonstrate that during pore-pressure drawdown permeability decreases and that permeability parallel and perpendicular to the maximum stress direction decreases at different rates. The smallest reduction in permeability is parallel to the maximum principal stress. Consequently, stress-induced permeability anisotropy evolves with pore-pressure drawdown and the magnitude of permeability anisotropy increases at lower stress paths. Field Measurements of Stress Path in Lenticular Sandstone Reservoirs Salz10 presented hydraulic fracture stress data and pore-pressure measurements from reservoir pressure build-up tests in low-permeability, lenticular, gas sandstones of the Vicksburg formation in the McAllen Ranch field, Texas (Table 1). This work was one of the first studies to clearly show that the total minimum horizontal stress is dependent on the pore pressure. Hydraulic fractures were completed in underpressured and overpressured sandstone intervals from approximately 3100 to 3800 m. Some of the sandstones (9A, 10A, 11A, 12A, 13A, and 14A) were later hydraulically fractured a second time to improve oil productivity after several years of production. For initial reservoir conditions before production, the total minimum horizontal stress shows a decrease with decreasing pore pressure for different sandstone reservoirs. The effective stress can also be determined from these data. Following Rice and Cleary11 effective stress is defined by σ = S − α P , ( 1 ) where ? is the effective stress, S is the total stress, ? is a poroelastic parameter, and P is the pore pressure. For this study ? is assumed to equal unity. A linear regression analysis of the minimum horizontal and vertical effective stress data shows that at initial reservoir conditions the ratio of change in minimum effective horizontal stress to the change in effective vertical stress with increasing depth and pore pressure is 0.50.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yugang Cheng ◽  
Zhaohui Lu ◽  
Xidong Du ◽  
Xuefu Zhang ◽  
Mengru Zeng

Hydraulic fracturing techniques for developing deeply buried coal reservoirs face routine problems related to high initial pressures and limited control over the fracture propagation direction. A novel method of directional hydraulic fracturing (DHF) based on hydraulic slotting in a nonuniform pore pressure field is proposed. A mechanical model is used to address crack initiation and propagation in a nonuniform pore pressure field, where cracks tend to rupture and propagate towards zones of high pore pressure for reducing the effective rock stress more. The crack initiation pressure and propagation morphology are analyzed by rock failure process analysis software. The numerical results show that the directional propagation of hydraulic fracturing cracks is possible when the horizontal stress difference coefficient is less than or equal to 0.5 or the slotting deviation angle is less than or equal to 30°. These findings are in good agreement with experimental results, which support the accuracy and reliability of the proposed method and theory.


1995 ◽  
Vol 85 (5) ◽  
pp. 1483-1489 ◽  
Author(s):  
Joaquim M. Ferreira ◽  
Ronaldo T. De Oliveira ◽  
Marcelo Assumpção ◽  
José A. M. Moreira ◽  
Robert G. Pearce ◽  
...  

Abstract Seismic monitoring of the Açu reservoir (31-m depth, 2.4 × 109 m3 in volume), in Rio Grande do Norte State, Northeastern Brazil, started in 1987 about 2 years after impoundment. The largest earthquake so far (magnitude 2.8) occurred in August 1994. From 1987 to 1989, the monthly number of induced events had a clear correlation with the water level, with a 3-month delay, and the activity occurred mainly inside the reservoir. Although no preimpoundment monitoring had been carried out, the correlation of the water level and the seismicity strongly suggests the activity was induced by pore pressure diffusion. Since 1990, the activity migrated toward the border of the reservoir, and the number of events no longer correlated with the water level. A seismographic network was deployed around the reservoir during two field campaigns (1989 and 1990/91), showing that the activity occurred preferentially with strike-slip mechanisms on NE oriented faults. The E-W orientation of the P axes, parallel to the regional maximum horizontal stress, and the presence of many NE trending faults and fractures in the Precambrian basement near the reservoir, suggest that the probably induced seismicity was a typical case of water pore pressure facilitating earthquake occurrence in pre-existing zones of weakness under high regional stresses.


Author(s):  
Marianne Rauch-Davies ◽  
Bob Schmicker ◽  
Steve W. Smith ◽  
Sam Green ◽  
Jeremy J. Meyer

Sign in / Sign up

Export Citation Format

Share Document