PRELIMINARY HYDROGEOLOGICAL MODELING OF PRODUCED WATER DEEP INJECTION IN THE DELAWARE BASIN FOR PORE PRESSURE CHARACTERIZATION

2020 ◽  
Author(s):  
Shuang Gao ◽  
◽  
Jean-Philippe Nicot ◽  
Peter Hennings
2021 ◽  
Author(s):  
Edward Ennin

Abstract Geological storage of CO2 in saline aquifers is recognized as a favorable technique that could deliver a significant decrease in CO2 emissions over the short to medium-term. However, the major risk is the possibility of leakage and injection limitation due to pore pressure. This research investigates the three major mechanisms of CO2 trapping to determine which method safely captures the most CO2, interrogates the pore pressure effect on storage, and compares traditional core flooding methods for CO2 storage with CO2 drainage which is more practical in the aquifer. A core flooding set up was built to replicate reservoir conditions of the Anadarko Basin in Texas, USA. The research involved three reservoir pay zone rocks obtained from depths of about 7687ft that were pieced together to undergo core flooding at 4400psi-5200psi and a temperature of 168°F. In the first study conducted the core was flooded with supercritical CO2 and brine of salinity 4000ppm to generate relative permeability curves to represent drainage and imbibition. For the duration of the 3rd, 4th, and 5th studies the core saturated with brine is flooded with CO2 at pressures of 4400psi, 4800psi, and 5200psi. Parameters like the volume of CO2 captured, connate water volumes, differential pressure, Ph of produced water, trapping efficiency, relative permeability, and fractional flow curves are noted. After scrutinizing the result it is observed that the highest volume of CO2 is captured by solubility trapping followed by structural trapping and residual trapping in that order. From this research, it can be concluded that CO2 trapping, at least for these reservoir rocks, is not affected by pore pressure. Also contrary to most practices CO2 storage is best replaced in the laboratory using drainage experiments instead of the widely used relative permeability approach.


2021 ◽  
Vol 91 (11) ◽  
pp. 1113-1132
Author(s):  
Katie Smye ◽  
D. Amy Banerji ◽  
Ray Eastwood ◽  
Guin McDaid ◽  
Peter Hennings

ABSTRACT Deepwater siliciclastic deposits of the Delaware Mountain Group (DMG) in the Delaware Basin (DB) are the primary interval for disposal of hydraulic fracturing flowback and produced water from unconventional oil production. Understanding the storage capacity of the DMG is critical in mitigating potential risks such as induced seismicity, water encroachment on production, and drilling hazards, particularly with likely development scenarios and expected volumes of produced water. Here we present a basin-wide geologic characterization of the DMG of the Delaware Basin. The stratigraphic architecture, lithology, and fluid-flow properties including porosity, permeability, amalgamation ratios, and pore volumes, are interpreted and mapped. Lithologies are predicted using gamma-ray and resistivity log responses calibrated to basinal DMG cores and outcrop models. Sandstones exhibit the highest porosity and permeability, and sand depocenters migrate clockwise and prograde basinward throughout Guadalupian time. Permeability is highest at the top of the Cherry and Bell Canyon formations of the DMG, reaching tens to hundreds of millidarcies in porous sandstones. Porous and permeable sandstones are fully amalgamated at the bed scale, but at the channel scale, most sandstones are separated by low-permeability siltstones or carbonates where net sandstone is less than 30%. This geologic characterization can be used to assess the regional storage capacity of the DMG and as input for dynamic fluid-flow models to address pore-pressure evolution, zonal containment, and induced seismicity.


Author(s):  
Marianne Rauch-Davies ◽  
Bob Schmicker ◽  
Steve W. Smith ◽  
Sam Green ◽  
Jeremy J. Meyer

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1492
Author(s):  
John Day ◽  
H. Clark ◽  
Chandong Chang ◽  
Rachael Hunter ◽  
Charles Norman

Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields can last 40–60 years and most wells are in the final stages of production. Production increased rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was generally higher during declining O&G production, making up about 70% of total liquids. Much of the wetland loss in the delta is associated with O&G activities. These have contributed in three major ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids removal and fault activation, and toxic stress due to spilled oil and produced water. Changes in surface hydrology are related to canal dredging and spoil placement. As canal density increases, the density of natural channels decreases. Interconnected canal networks often lead to saltwater intrusion. Spoil banks block natural overland flow affecting exchange of water, sediments, chemicals, and organisms. Lower wetland productivity and reduced sediment input leads to enhanced surficial subsidence. Spoil banks are not permanent but subside and compact over time and many spoil banks no longer have subaerial expression. Fluid withdrawal from O&G formations leads to induced subsidence and fault activation. Formation pore pressure decreases, which lowers the lateral confining stress acting in the formation due to poroelastic coupling between pore pressure and stress. This promotes normal faulting in an extensional geological environment like the MRD, which causes surface subsidence in the vicinity of the faults. Induced reservoir compaction results in a reduction of reservoir thickness. Induced subsidence occurs in two phases especially when production rate is high. The first phase is compaction of the reservoir itself while the second phase is caused by a slow drainage of pore pressure in bounding shales that induces time-delayed subsidence associated with shale compaction. This second phase can continue for decades, even after most O&G has been produced, resulting in subsidence over much of an oil field that can be greater than surface subsidence due to altered hydrology. Produced water is water brought to the surface during O&G extraction and an estimated 2 million barrels per day were discharged into Louisiana coastal wetlands and waters from nearly 700 sites. This water is a mixture of either liquid or gaseous hydrocarbons, high salinity (up to 300 ppt) water, dissolved and suspended solids such as sand or silt, and injected fluids and additives associated with exploration and production activities and it is toxic to many estuarine organisms including vegetation and fauna. Spilled oil has lethal and sub-lethal effects on a wide range of estuarine organisms. The cumulative effect of alterations in surface hydrology, induced subsidence, and toxins interact such that overall impacts are enhanced. Restoration of coastal wetlands degraded by O&G activities should be informed by these impacts.


2021 ◽  
Author(s):  
Dustin Aro ◽  
Steven Fowler

Abstract The Delaware Basin encompasses 6.4 million acres throughout Southeastern New Mexico and West Texas. With large players such as ExxonMobil, Shell or Oxy typically grabbing headlines, it's easy to forget the multitude of smaller public and private E&P operators who exist in and around the acreage positions of the aforementioned companies. Regardless of the size of the acreage holding, a consistent theme is that a typical horizontal well drilled and completed (D&C) will yield water cuts of 60-90% at any given period in its productive lifespan. Saltwater production, handling and disposal (SWD) is a drag on lease operating expenses (LOE). SWD costs via trucking, pipeline, or on-lease SWD wells can range between $0.50-$3.00/bbl. As existing infrastructure is exhausted, water handling costs have been projected to rise to over $5.00/bbl. Additionally, restricted access to SWD could cause production curtailments and thus impacting operators beyond direct LOE.1 Well completion operations are impacted by freshwater procurement costs starting around $0.75/bbl. Regardless of final frac design, water consumption during fracturing operations typically exceeds 500,000 bbls or $375,000 per well. Significant value exists for recycling produced water via an on-lease pit and utilizing it for future frac operations. The produced water turns into an asset if the operator can efficiently manage to substitute higher and higher percentages of freshwater with produced water. Many smaller operators (defined as less than 50,000 acres) may view produced water recycling as an operation best left to large E&P's with their massive capital budgets and contiguous acreage. Fortunately, even a 5 well, section development plan can yield returns from an on-lease produced water recycling program.


Sign in / Sign up

Export Citation Format

Share Document