Future Changes in Extreme Temperature and Precipitation over East Asia under SSP Scenarios

2021 ◽  
Vol 12 (2) ◽  
pp. 143-162
Author(s):  
Sungbo Shim ◽  
Jisun Kim ◽  
Hyun Min Sung ◽  
Jae-Hee Lee ◽  
Sang-Hoon Kwon ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2535
Author(s):  
Jintao Zhang ◽  
Fang Wang

Limiting the global temperature increase to a level that would prevent “dangerous anthropogenic interference with the climate system” is the focus of intergovernmental climate negotiations, and the cost-benefit analysis to determine this level requires an understanding of how the risk associated with climate extremes varies with different warming levels. We examine daily extreme temperature and precipitation variances with continuous global warming using a non-stationary extreme value statistical model based on the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results show the probability of extreme warm and heavy precipitation events over East Asia (EA) will increase, while that of cold extremes over EA will decrease as global warming increases. A present-day 1-in-20-year heavy precipitation extreme in EA is projected to increase to 1.3, 1.6, 2.5, and 3.4 times more frequently of the current climatology, at the global mean warming levels of 1.5 °C, 2 °C, 3 °C, and 4 °C above the preindustrial era, respectively. Moreover, the relative changes in probability are larger for rarer events. These results contribute to an improved understanding of the future risk associated with climate extremes, which helps scientists create mitigation measures for global warming and facilitates policy-making.


2021 ◽  
Vol 12 (2) ◽  
pp. 143-162
Author(s):  
Sungbo Shim ◽  
Jisun Kim ◽  
Hyun Min Sung ◽  
Jae-Hee Lee ◽  
Sang-Hoon Kwon ◽  
...  

2018 ◽  
Author(s):  
Kishore Pangaluru ◽  
Isabella Velicogna ◽  
Tyler C. Sutterley ◽  
Yara Mohajerani ◽  
Enrico Ciraci ◽  
...  

Abstract. Changes in extreme temperature and precipitation may give some of the largest significant societal and ecological impacts. For changes in the magnitude of extreme temperature and precipitation over India, we used a statistical model of generalized extreme value (GEV) distribution. The GEV statistical distribution is a time-dependent distribution with different time scales of variability bounded by a precipitation, maximum (Tmax), and minimum (Tmin) temperature extremes and also assessed their possibility changes are evaluated and quantified over India is presented. The GEV-based method is applied on both precipitation and temperature extremes over India during the 20th and 21st centuries using multiple coupled climate models taking an interest in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and observational datasets. The regional means of historical warm extreme temperatures are 34.89, 36.42, and 38.14 °C for three different (10, 20, and 50-year) periods, respectively; whereas the cold extreme mean temperatures are 7.75, 4.19, and −1.57 °C. It indicates that 20th century cold extreme temperatures have relatively larger variations than the warm extremes. As for the future, the CMIP5 models of warm extreme regional mean values increase from 0.33 to 0.75 °C in all return periods (10-, 20-, and 50-year periods), while in the case of cold extreme means values vary between 0.58 and 2.29 °C. In the future, cold extreme values have a larger increasing rate over the northwest, northeast, some parts of north-central, and Inter Peninsula regions. The CRU precipitation extremes are larger than the historical extreme precipitation in all three (10, 20, and 50-year) return-periods.


2016 ◽  
Vol 37 (4) ◽  
pp. 1979-1997 ◽  
Author(s):  
Supari ◽  
Fredolin Tangang ◽  
Liew Juneng ◽  
Edvin Aldrian

Sign in / Sign up

Export Citation Format

Share Document