scholarly journals THE EFFECT OF SEWAGE SLUDGE ON AND CUP PLANT’S (SILPHIUM PERFOLIATUM L.) BIOMASS PRODUCTIVITY UNDER WESTERN LITHUANIA’S RETISOL

Author(s):  
Gintaras ŠIAUDINIS ◽  
Danutė KARČAUSKIENĖ

The long-term field experiment with new high yielding perennial energy crop - cup plant (Silphium perfoliatum L.) was conducted in order to evaluate its biomass productivity in Vėžaičiai branch of the Lithuanian Research Centre for Agricultural and Forestry. Experimental site – naturally acid Bathygleic Dystric Glossic Retisol, pH 4.2-4.4. Granulated sewage sludge was applied (at 45 and 90 t ha-1 rates) as an alternative organic fertilizer. The fertilization was done at the beginning of the experiment, prior to cup plant’s sprouts planting in 2013. Each experimental year, traditional N60P60K60 fertilization was performed in a separate treatment. Cup plant’s biomass was harvesting once per season at the end of vegetation. Cup plant’s dry mass (DM) yield substantially increased from 2.80 t ha-1 (in 2014) to 13.41 t ha-1 (in 2016). The use of sewage sludge fertilization was notably superior to that of mineral fertilization for cup plant’s biomass productivity. In all experimental years, the optimal was the application of 45 t ha-1 rate of sewage sludge - in compare with unfertilized treatment (control), DM yield increased by 66 %, on average. Increasing of sewage sludge rate up to 90 kg ha-1 did not give any DM yield supplement. Energy evaluation of growing technology revealed that the application of 45 t ha-1 sewage sludge rate caused the substantial increase of energy output from 1 ha; and on the contrarily, sharply decreased net energy ratio. In order to determine the long-term effects of fertilization on biomass yield, these studies will continue a few more years.

FLORESTA ◽  
2019 ◽  
Vol 49 (3) ◽  
pp. 485
Author(s):  
Lívia Mara Lima Goulart ◽  
Marianne Fidalgo de Faria ◽  
Grasiela Spada ◽  
Thiago Tássio de Souza Silva ◽  
Iraê Amaral Guerrini

The use of sewage sludge in agriculture and recovery of degraded areas has been shown as a promising alternative for its final destination. Studies on micronutrient levels after sludge application are necessary to avoid soil contamination at toxic levels. The objective of this work was to verify the micronutrient contents in the soil profile and pH, up to one-meter-deep, nine years after the application of sewage sludge and planting of native species of the Atlantic Forest. The experiment was implemented in a degraded Quartzeneic Neosol and conducted in randomized blocks with four replicates and eight treatments, consisting of six doses of sewage sludge (0, 2.5, 5, 10, 15 and 20 Mg ha-1, with supplementation of potassium due to low concentration in the residue), besides the control treatment, mineral fertilization and only potassium supplementation. After nine years, the contents of all micronutrients evaluated presented a significant response to the application of the treatments, and the application of sewage sludge provided an increase in their contents. Soil pH remained stable at sites receiving mineral fertilization and potassium supplementation. Only manganese and zinc showed mobility in the soil profile. The application of sewage sludge in degraded soil increases the micronutrient content and decreases its movement in the soil profile, and the application of the maximum dose of the residue does not provide toxic levels of these elements in the soil in the long term.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1393
Author(s):  
Karin S. Levin ◽  
Karl Auerswald ◽  
Hans Jürgen Reents ◽  
Kurt-Jürgen Hülsbergen

Combining organic farming and biogas production from agricultural feedstocks has been suggested as a way of achieving carbon (C) neutrality in Europe. However, as the long-term effects of C removal for methane production on soil organic carbon (SOC) are unclear, organic farmers in particular have questioned whether farm biogas production will have a positive effect on soil fertility. Eight years of data from an organic long-term field trial involving digestate fertilisation and various crop rotations (CRs) with differing proportions of clover-grass leys were used to calculate C inputs based on the CANDY model, and these modelled changes compared with measured changes in SOC content (SOCc) over the same period. Measured SOCc increased by nearly 20% over the eight years. Digestate fertilisation significantly increased SOCc. Fertilised plots with the highest proportion of clover-grass in the CR had the highest SOCc. The C inputs from clover-grass leys, even if they only made up 25% of the CR, were high enough to increase SOCc, even with the removal of all aboveground biomass and without fertilisation. Our results show that biogas production based on clover-grass leys could be an important part of sustainable farming, improving or maintaining SOCc and improving nutrient flows, particularly in organic farming, while simultaneously providing renewable energy.


1999 ◽  
Vol 30 (1-2) ◽  
pp. 100-106 ◽  
Author(s):  
A. Saviozzi ◽  
A. Biasci ◽  
R. Riffaldi ◽  
R. Levi-Minzi

2017 ◽  
Vol 36 (12) ◽  
pp. 3305-3313 ◽  
Author(s):  
Marco Kraas ◽  
Karsten Schlich ◽  
Burkhard Knopf ◽  
Franziska Wege ◽  
Ralf Kägi ◽  
...  

2017 ◽  
Vol 26 ◽  
pp. 30-36
Author(s):  
L. V. Potapenko ◽  
L. M. Skachok ◽  
N. I. Horbachenko

The influence of microbial preparations on the processes of biological transformation of organicsubstance in sod-podzolic soils under the long-term effects of various fertilization systems has beeninvestigated. It has been established that organic-mineral fertilization systems in the technologies ofcultivating agricultural crops and the use of microbial preparations are appropriate for replenishing thesoil with the required amount of organic substance.


1988 ◽  
Vol 110 (3) ◽  
pp. 491-497 ◽  
Author(s):  
F. Diaz-Fierros ◽  
M. Carmen Villar ◽  
F. Gil ◽  
M. Carballas ◽  
M. Carmen Leiros ◽  
...  

SummaryThe mineralization kinetics of nitrogen in acid soils, and their modification by the addition of an organic fertilizer (cattle slurry), were studied by incubating a humic cambisol for 36 weeks using a method based on that of Keeney & Bremner (1967). The cumulative curve of the quantity of nitrogen mineralized in soil not given fertilizer departs significantly from Stanford's theoretical model, which predicts linear dependence of nitrogen mineralized upon √t. The observed kinetics are interpreted as due to the superposition of two mineralization processes involving different substrates.The cumulative mineralized nitrogen curves for soil samples enriched with the various slurry fractions likewise reflect complex kinetics involving at least two main substrates. Consideration of the net mineralized nitrogen shows that F,, the solid fraction with the highest C/N ratio, clearly induced immobilization of nitrogen during the first 130 days of incubation, and analysis of the NO3/NH4 ratio suggests that this immobilization was probably at the expense of nitrate. F3, the liquid fraction, first induced a brief period of mineralization and then stabilized nitrogen levels, giving rise to a reduction in net mineralized nitrogen. The addition to the soil of F2, the semi-liquid fraction, produced results intermediate between those of the other two fractions.In conclusion, the increase in organic nitrogen in the soil after addition of cattle slurry depends in the short term on the liquid and semi-liquid fractions, whereas long-term effects involve both the stable residues of these fractions and the more solid fraction. The labile fraction of the pool of mineralizable N benefits more than the recalcitrant fraction, and the time constants of the mineralization process are reduced.


Sign in / Sign up

Export Citation Format

Share Document