Kumaraswamy odd Burr G family of distributions with applications to reliability data

2018 ◽  
Vol 55 (1) ◽  
pp. 94-114
Author(s):  
Arslan Nasir ◽  
Hassan S. Bakouch ◽  
Farrukh Jamal

We exhibit a general family of distributions named “Kumaraswamy odd Burr G family of distributions” with four additional parameters to generalize any existing baseline distribution. Some statistical properties of the family are derived, including rth moments, mth incomplete moments, moment generating function and entropies. The parameters of the family are estimated by the maximum likelihood (ML) method for complete sam- ples as well as censored samples. Some sub-models of the family are considered and it is noted that their density functions can be symmetric, left-skewed, right-skewed, unimodal, bimodal and their hazard rate functions can be increasing, decreasing, bathtub, upside- down bathtub and J-shaped. Simulation is carried out for one of the sub-models to check the asymptotic behavior of the ML estimates. Applications to reliability (complete and censored) data are carried out to check the usefulness of some sub-models of the family.

2019 ◽  
Vol 56 (2) ◽  
pp. 185-210 ◽  
Author(s):  
Abraão D. C. Nascimento ◽  
Kássio F. Silva ◽  
Gauss M. Cordeiro ◽  
Morad Alizadeh ◽  
Haitham M. Yousof ◽  
...  

Abstract We study some mathematical properties of a new generator of continuous distributions called the Odd Nadarajah-Haghighi (ONH) family. In particular, three special models in this family are investigated, namely the ONH gamma, beta and Weibull distributions. The family density function is given as a linear combination of exponentiated densities. Further, we propose a bivariate extension and various characterization results of the new family. We determine the maximum likelihood estimates of ONH parameters for complete and censored data. We provide a simulation study to verify the precision of these estimates. We illustrate the performance of the new family by means of a real data set.


2018 ◽  
Vol 14 (2) ◽  
pp. 27-43
Author(s):  
Nuri Celik

Abstract In this article, we introduce some examples of cubic rank transmuted distributions proposed by Granzatto et al. (2017). The statistical aspects of the introduced distributions such as probability density functions, hazard rate functions and reliability functions are studied. The maximum likelihood estimation method is used in order to estimate the parameters of interest. Finally, real data examples are applied for the illustration of these distributions.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 358 ◽  
Author(s):  
M. S. Eliwa ◽  
Ziyad Ali Alhussain ◽  
M. El-Morshedy

Alizadeh et al. introduced a flexible family of distributions, in the so-called Gompertz-G family. In this article, a discrete analogue of the Gompertz-G family is proposed. We also study some of its distributional properties and reliability characteristics. After introducing the general class, three special models of the new family are discussed in detail. The maximum likelihood method is used for estimating the family parameters. A simulation study is carried out to assess the performance of the family parameters. Finally, the flexibility of the new family is illustrated by means of four genuine datasets, and it is found that the proposed model provides a better fit than the competitive distributions.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Marcelo Bourguignon ◽  
Indranil Ghosh ◽  
Gauss M. Cordeiro

The transmuted family of distributions has been receiving increased attention over the last few years. For a baselineGdistribution, we derive a simple representation for the transmuted-Gfamily density function as a linear mixture of theGand exponentiated-Gdensities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, Rényi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
T. Bouezmarni ◽  
A. El Ghouch ◽  
M. Mesfioui

The nonparametric estimation for the density and hazard rate functions for right-censored data using the kernel smoothing techniques is considered. The “classical” fixed symmetric kernel type estimator of these functions performs well in the interior region, but it suffers from the problem of bias in the boundary region. Here, we propose new estimators based on the gamma kernels for the density and the hazard rate functions. The estimators are free of bias and achieve the optimal rate of convergence in terms of integrated mean squared error. The mean integrated squared error, the asymptotic normality, and the law of iterated logarithm are studied. A comparison of gamma estimators with the local linear estimator for the density function and with hazard rate estimator proposed by Müller and Wang (1994), which are free from boundary bias, is investigated by simulations.


2020 ◽  
Vol 8 (1) ◽  
pp. 17-35
Author(s):  
Hamid Esmaeili ◽  
Fazlollah Lak ◽  
Emrah Altun

This paper investigates general mathematical properties of a new generator of continuous distributions with two extra parameter called the Ristic-Balakrishnan odd log-logistic family of distributions. We present some special models and investigate the asymptotes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Explicit expressions for the ordinary and incomplete moments, generating functions and order statistics, which hold for any baseline model, are determined. Further, we discuss the estimation of the model parameters by maximum likelihood and present a simulation study based on maximum likelihood estimation. A regression model based on proposed model was introduced. Finally, three applications to real data were provided to illustrate the potentiality of the family of distributions.


2020 ◽  
Vol 70 (4) ◽  
pp. 917-934
Author(s):  
Muhammad Mansoor ◽  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro ◽  
Sajid Ali ◽  
Ayman Alzaatreh

AbstractA generalization of the Lindley distribution namely, Lindley negative-binomial distribution, is introduced. The Lindley and the exponentiated Lindley distributions are considered as sub-models of the proposed distribution. The proposed model has flexible density and hazard rate functions. The density function can be decreasing, right-skewed, left-skewed and approximately symmetric. The hazard rate function possesses various shapes including increasing, decreasing and bathtub. Furthermore, the survival and hazard rate functions have closed form representations which make this model tractable for censored data analysis. Some general properties of the proposed model are studied such as ordinary and incomplete moments, moment generating function, mean deviations, Lorenz and Bonferroni curve. The maximum likelihood and the Bayesian estimation methods are utilized to estimate the model parameters. In addition, a small simulation study is conducted in order to evaluate the performance of the estimation methods. Two real data sets are used to illustrate the applicability of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document