scholarly journals Prevalence of resistance mutations associated with integrase inhibitors in therapy-naive HIV-positive patients in Hungary

Author(s):  
Éva Áy ◽  
Ágnes Pocskay ◽  
Botond Lakatos ◽  
János Szlávik ◽  
Mária Mezei ◽  
...  

AbstractWidespread introduction of HIV integrase inhibitors into clinical care may result in appearance of drug resistance mutations affecting treatment outcome. The aim of our study was to monitor the resistance patterns of integrase inhibitors beside protease and reverse transcriptase inhibitors in newly diagnosed therapy-naive HIV-positive patients in Hungary between 2017 and 2019.Genotype-based resistance testing of HIV integrase, protease and reverse transcriptase was performed by amplification and Sanger population sequencing from plasma samples. Drug resistance mutations were identified by the algorithm of Stanford HIV Drug Resistance Database.Potentially transmitted, non-polymorphic integrase major mutation was detected in 1 out of 249 samples, while accessory mutations were observed in further 31 patients (12.4%). The overall prevalence of transmitted drug resistance (TDR) mutations related to protease and reverse transcriptase inhibitors was 5.8% (10/173) between the end of 2017 and 2019. Nucleoside reverse transcriptase inhibitor associated resistance mutations were the most frequent indicators of TDR (6/173; 3.5%), followed by resistance mutations associated with protease (3/173; 1.7%) and non-nucleoside reverse transcriptase inhibitors (2/173, 1.2%).The first detection of integrase major mutation and the changing patterns of other resistance mutations in Hungarian untreated HIV-positive population indicate the necessity of continuous molecular surveillance of Hungarian HIV epidemic.

2017 ◽  
Author(s):  
Claudia Gonzalez ◽  
Jessica Gondola ◽  
Alma Y Ortiz ◽  
Juan M Castillo ◽  
Juan M Pascale ◽  
...  

ABSTRACTDetermination of HIV drug resistance (HIVDR) is becoming an integral baseline HIV evaluation for newly infected subjects, as the level of pre-treatment resistance is increasing worldwide. Until now, the gold standard for monitoring ART mutations is the Sanger sequencing method, however, next-generation sequencing technologies (NGS) because high-throughput capability, are gaining attention as a method for detection of HIVDR. In the present work, we evaluated the use of the Oxford Nanopore Technologies (ONT) MinION as an alternative method for detection of drug resistance mutations in pre-treatment HIV positive subjects.We evaluate 36 samples taken during November 2016 from treatment naïve subjects with age greater than 18 years old, who went to the lab for their first HIV monitoring. To evaluate the agreement between Sanger and MinION generated sequences, we aligned the sequences (∼1200bp) with muscle v. 3.8.31. Then we counted the differences and calculated the p-distance of the obtained sequences, comparing paired sequences and grouping Sanger and MinION obtained sequences. The percentage of similarity among each sequence was also evaluated.All samples were submitted to the Standford University HIV drug resistance database (HIVdb version 8.4). Then we compared the resistance predictions obtained from the sequences generated by Sanger and MinION methods.Results: The median of available pores was 1314 for the first run, 1215 for the second run, and 536 for the third run. After 3 hours with SQK-NSK007 a total of 18803 2D reads were base-called and in 16577 reads (88%) a barcode was detected.Comparing the nucleotide differences of each sample, we observed that 23 (74%) samples had identical sequence, for the other samples the percentage of identity among each analyzed sequence was greater than 95%. A good positive predictive value (100%) in the estimation of drug resistance mutations in the groups of protease inhibitors (PI), nucleoside reverse transcriptase inhibitors (NRTIs), and non-nucleoside reverse transcriptase inhibitors (NNRTIs).We present an approach for the analysis of HIV reads generated with MinION ONT, further studies are guaranteed before the application of this methodology in clinical settings to assess its suitability for HIVDR testing.


2020 ◽  
Author(s):  
Adetayo Emmanuel Obasa ◽  
Anoop T Ambikan ◽  
Soham Gupta ◽  
Ujjwal Neogi ◽  
Graeme Brendon Jacobs

Abstract Background: HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients suspected of failing on the South African national second-line cART regimen with bPIs.Methods: During 2017 and 2018, 67 patient samples were selected, of which 56 samples were successfully analyzed. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database.Results: Statistically significantly (p<0.001) higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to nucleoside reverse transcriptase inhibitors (11%; 6/56), non-nucleoside reverse transcriptase inhibitors (9%; 5/56) and integrase inhibitor RAM (4%; 2/56). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n=13) in protease and K65R (n=5), K103N (n=7) and M184V (n=5) in reverse transcriptase.Conclusions: HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in <20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.


2018 ◽  
Vol 11 ◽  
pp. 117863371878887
Author(s):  
Sanjeev Sinha ◽  
Kartik Gupta ◽  
Nawaid Hussain Khan ◽  
Dibyakanti Mandal ◽  
Mikashmi Kohli ◽  
...  

Background: Emergence of human immunodeficiency virus (HIV) drug resistance mutations prior to highly active antiretroviral therapy is a serious problem in clinical management of HIV/AIDS. Risk factors for appearance of drug resistance mutations are not known. We hypothesize that Mycobacterium tuberculosis infection may contribute to rapid emergence of such mutations in antiretroviral therapy–naïve patients. Methods: A total of 115 patients were recruited in this study of which 75 were HIV+TB+ coinfected (group 1) and 40 were HIV+TB− (group 2). Blood samples from all the patients were collected and CD4+ cell counts; HIV-1 plasma viral load and sequencing of protease and two-third region of reverse transcriptase of HIV-1 was performed and analyzed for drug resistance pattern. Results: For patients with HIV+TB+, 10.6% (8/75) had mutations to non-nucleoside reverse transcriptase inhibitors (NNRTIs), 4% (3/75) to nucleoside reverse transcriptase inhibitors, and only 2.6% (2/75) patients had mutations to protease inhibitors. Interestingly, for group 2 (HIV+TB−), there were only NNRTI mutations found among these patients, and only 3 patients (7.5%) had these drug-resistant mutations. Clade typing and phylogenetic tree analysis showed HIV-1 subtype C predominance in these patients. Conclusions: Our study showed that higher percentage of HIV drug resistance mutations was found among HIV+TB+ individuals compared with tuberculosis-uninfected patients. Tuberculosis coinfection may be a risk factor for emergence of high frequency of drug resistance mutations. Studies with a larger sample size will help to confirm these findings from the Indian population.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Tali Wagner ◽  
Neta S. Zuckerman ◽  
Tami Halperin ◽  
Daniel Chemtob ◽  
Itzchak Levy ◽  
...  

Despite the low prevalence of HIV-1 in Israel, continuous waves of immigration may have impacted the local epidemic. We characterized all people diagnosed with HIV-1 in Israel in 2010–2018. The demographics and clinical data of all individuals (n = 3639) newly diagnosed with HIV-1 were retrieved. Subtypes, transmitted drug-resistance mutations (TDRM), and phylogenetic relations, were determined in >50% of them. In 39.1%, HIV-1 transmission was through heterosexual contact; 34.3% were men who have sex with men (MSM); and 10.4% were people who inject drugs. Many (>65%) were immigrants. Israeli-born individuals were mostly (78.3%) MSM, whereas only 9% of those born in Sub-Saharan Africa (SSA), Eastern Europe and Central Asia (EEU/CA), were MSM. The proportion of individuals from SSA decreased through the years 2010–2018 (21.1% in 2010–2012; 16.8% in 2016–2018) whereas those from EEU/CA increased significantly (21% in 2010–2012; 27.8% in 2016–2018, p < 0.001). TDRM were identified in 12.1%; 3.7, 3.3 and 6.6% had protease inhibitors (PI), nucleotide reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) TDRM, respectively, with the overall proportion remaining stable in the studied years. None had integrase TDRM. Subtype B was present in 43.9%, subtype A in 25.2% (A6 in 22.8 and A1 in 2.4%) and subtype C in 17.1% of individuals. Most MSM had subtype B. Subtype C carriers formed small clusters (with one unexpected MSM cluster), A1 formed a cluster mainly of locally-born patients with NNRTI mutations, and A6 formed a looser cluster of individuals mainly from EEU. Israelis, <50 years old, carrying A1, had the highest risk for having TDRM. In conclusion, an increase in immigrants from EEU/CA and a decrease in those from SSA characterized the HIV-1 epidemic in 2010–2018. Baseline resistance testing should still be recommended to identify TDRM, and improve surveillance and care.


2018 ◽  
Vol 5 (8) ◽  
Author(s):  
Sara N Levintow ◽  
Nwora Lance Okeke ◽  
Stephane Hué ◽  
Laura Mkumba ◽  
Arti Virkud ◽  
...  

Abstract Background Transmitted drug resistance (TDR) compromises clinical management and outcomes. Transmitted drug resistance surveillance and identification of growing transmission clusters are needed in the Southeast, the epicenter of the US HIV epidemic. Our study investigated prevalence and transmission dynamics in North Carolina. Methods We analyzed surveillance drug resistance mutations (SDRMs) using partial pol sequences from patients presenting to 2 large HIV outpatient clinics from 1997 to 2014. Transmitted drug resistance prevalence was defined as ≥1 SDRMs among antiretroviral therapy (ART)–naïve patients. Binomial regression was used to characterize prevalence by calendar year, drug class, and demographic and clinical factors. We assessed the transmission networks of patients with TDR with maximum likelihood trees and Bayesian methods including background pol sequences (n = 15 246). Results Among 1658 patients with pretherapy resistance testing, ≥1 SDRMs was identified in 199 patients, with an aggregate TDR prevalence of 12% (95% confidence interval, 10% to 14%) increasing over time (P = .02). Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs; 8%) was common, followed by nucleoside reverse transcriptase inhibitors (4%) and protease inhibitors (2%). Factors associated with TDR were being a man reporting sex with men, white race, young age, higher CD4 cell count, and being a member of a transmission cluster. Transmitted drug resistance was identified in 106 clusters ranging from 2 to 26 members. Cluster resistance was primarily NNRTI and dominated by ART-naïve patients or those with unknown ART initiation. Conclusions Moderate TDR prevalence persists in North Carolina, predominantly driven by NNRTI resistance. Most TDR cases were identified in transmission clusters, signifying multiple local transmission networks and TDR circulation among ART-naïve persons. Transmitted drug resistance surveillance can detect transmission networks and identify patients for enhanced services to promote early treatment.


2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.


Sign in / Sign up

Export Citation Format

Share Document