scholarly journals The “k = 1” Case of a Problem of Greene and Kleitman from 1976: Join-Irreducible Elements in the Lattice of Sperner 1-Families

2021 ◽  
Author(s):  
Jonathan David Farley

Let k ≥ 1. A Sperner k-family is a maximum-sized subset of a finite poset that contains no chain with k + 1 elements. In 1976 Greene and Kleitman defined a lattice-ordering on the set Sk(P) of Sperner k-families of a fifinite poset P and posed the problem: “Characterize and interpret the join- and meet-irreducible elements of Sk(P),” adding, “This has apparently not been done even for the case k = 1.”In this article, the case k = 1 is done.

2013 ◽  
Vol 63 (6) ◽  
Author(s):  
Weifeng Zhou ◽  
Qingguo Li ◽  
Lankun Guo

AbstractIn this paper, some properties of prime elements, pseudoprime elements, irreducible elements and coatoms in posets are investigated. We show that the four kinds of elements are equivalent to each other in finite Boolean posets. Furthermore, we demonstrate that every element of a finite Boolean poset can be represented by one kind of them. The example presented in this paper indicates that this result may not hold in every finite poset, but all the irreducible elements are proved to be contained in each order generating set. Finally, the multiplicative auxiliary relation on posets and the notion of arithmetic poset are introduced, and some properties about them are generalized to posets.


2012 ◽  
Vol 96 (536) ◽  
pp. 283-287
Author(s):  
M. H. Jafari ◽  
A. R. Madadi

2018 ◽  
Vol 62 (2) ◽  
pp. 395-442 ◽  
Author(s):  
Daniel Smertnig

AbstractIf H is a monoid and a = u1 ··· uk ∈ H with atoms (irreducible elements) u1, … , uk, then k is a length of a, the set of lengths of a is denoted by Ⅼ(a), and ℒ(H) = {Ⅼ(a) | a ∈ H} is the system of sets of lengths of H. Let R be a hereditary Noetherian prime (HNP) ring. Then every element of the monoid of non-zero-divisors R• can be written as a product of atoms. We show that if R is bounded and every stably free right R-ideal is free, then there exists a transfer homomorphism from R• to the monoid B of zero-sum sequences over a subset Gmax(R) of the ideal class group G(R). This implies that the systems of sets of lengths, together with further arithmetical invariants, of the monoids R• and B coincide. It is well known that commutative Dedekind domains allow transfer homomorphisms to monoids of zero-sum sequences, and the arithmetic of the latter has been the object of much research. Our approach is based on the structure theory of finitely generated projective modules over HNP rings, as established in the recent monograph by Levy and Robson. We complement our results by giving an example of a non-bounded HNP ring in which every stably free right R-ideal is free but which does not allow a transfer homomorphism to a monoid of zero-sum sequences over any subset of its ideal class group.


Author(s):  
G. Grätzer ◽  
H. Lakser ◽  
E. T. Schmidt

AbstractLet K and L be lattices, and let ϕ be a homomorphism of K into L.Then ϕ induces a natural 0-preserving join-homomorphism of Con K into Con L.Extending a result of Huhn, the authors proved that if D and E are finite distributive lattices and ψ is a 0-preserving join-homomorphism from D into E, then D and E can be represented as the congruence lattices of the finite lattices K and L, respectively, such that ψ is the natural 0-preserving join-homomorphism induced by a suitable homomorphism ϕ: K → L. Let m and n denote the number of join-irreducible elements of D and E, respectively, and let k = max (m, n). The lattice L constructed was of size O(22(n+m)) and of breadth n+m.We prove that K and L can be constructed as ‘small’ lattices of size O(k5) and of breadth three.


2010 ◽  
Vol 106 (1) ◽  
pp. 88 ◽  
Author(s):  
Luis A. Dupont ◽  
Rafael H. Villarreal

The normality of a monomial ideal is expressed in terms of lattice points of blocking polyhedra and the integer decomposition property. For edge ideals of clutters this property characterizes normality. Let $G$ be the comparability graph of a finite poset. If $\mathrm{cl}(G)$ is the clutter of maximal cliques of $G$, we prove that $\mathrm{cl}(G)$ satisfies the max-flow min-cut property and that its edge ideal is normally torsion free. Then we prove that edge ideals of complete admissible uniform clutters are normally torsion free.


10.37236/75 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Richard P. Stanley

Promotion and evacuation are bijections on the set of linear extensions of a finite poset first defined by Schützenberger. This paper surveys the basic properties of these two operations and discusses some generalizations. Linear extensions of a finite poset $P$ may be regarded as maximal chains in the lattice $J(P)$ of order ideals of $P$. The generalizations concern permutations of the maximal chains of a wider class of posets, or more generally bijective linear transformations on the vector space with basis consisting of the maximal chains of any poset. When the poset is the lattice of subspaces of ${\Bbb F}_q^n$, then the results can be stated in terms of the expansion of certain Hecke algebra products.


10.37236/6898 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu ◽  
Hsiang-Chun Hsu ◽  
Yu-Pei Huang

For a partition $\lambda$ of an integer, we associate $\lambda$ with a slender poset $P$ the Hasse diagram of which resembles the Ferrers diagram of $\lambda$. Let $X$ be the set of maximal chains of $P$. We consider Stanley's involution $\epsilon:X\rightarrow X$, which is extended from Schützenberger's evacuation on linear extensions of a finite poset. We present an explicit characterization of the fixed points of the map $\epsilon:X\rightarrow X$ when $\lambda$ is a stretched staircase or a rectangular shape. Unexpectedly, the fixed points have a nice structure, i.e., a fixed point can be decomposed in half into two chains such that the first half and the second half are the evacuation of each other. As a consequence, we prove anew Stembridge's $q=-1$ phenomenon for the maximal chains of $P$ under the involution $\epsilon$ for the restricted shapes.


10.37236/4334 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Darij Grinberg ◽  
Tom Roby

We study a birational map associated to any finite poset $P$. This map is a far-reaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of $P$. Classical rowmotion has been studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker, Williams and many more) under different guises (Striker-Williams promotion and Panyushev complementation are two examples of maps equivalent to it). In contrast, birational rowmotion is new and has yet to reveal several of its mysteries. In this paper, we set up the tools for analyzing the properties of iterates of this map, and prove that it has finite order for a certain class of posets which we call "skeletal". Roughly speaking, these are graded posets constructed from one-element posets by repeated disjoint union and "grafting onto an antichain"; in particular, any forest having its leaves all on the same rank is such a poset. We also make a parallel analysis of classical rowmotion on this kind of posets, and prove that the order in this case equals the order of birational rowmotion.


1971 ◽  
Vol 23 (5) ◽  
pp. 866-874 ◽  
Author(s):  
Raymond Balbes

For a distributive lattice L, let denote the poset of all prime ideals of L together with ∅ and L. This paper is concerned with the following type of problem. Given a class of distributive lattices, characterize all posets P for which for some . Such a poset P will be called representable over. For example, if is the class of all relatively complemented distributive lattices, then P is representable over if and only if P is a totally unordered poset with 0, 1 adjoined. One of our main results is a complete characterization of those posets P which are representable over the class of distributive lattices which are generated by their meet irreducible elements. The problem of determining which posets P are representable over the class of all distributive lattices appears to be very difficult.


Sign in / Sign up

Export Citation Format

Share Document