scholarly journals Iterative Properties of Birational Rowmotion I: Generalities and Skeletal Posets

10.37236/4334 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Darij Grinberg ◽  
Tom Roby

We study a birational map associated to any finite poset $P$. This map is a far-reaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of $P$. Classical rowmotion has been studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker, Williams and many more) under different guises (Striker-Williams promotion and Panyushev complementation are two examples of maps equivalent to it). In contrast, birational rowmotion is new and has yet to reveal several of its mysteries. In this paper, we set up the tools for analyzing the properties of iterates of this map, and prove that it has finite order for a certain class of posets which we call "skeletal". Roughly speaking, these are graded posets constructed from one-element posets by repeated disjoint union and "grafting onto an antichain"; in particular, any forest having its leaves all on the same rank is such a poset. We also make a parallel analysis of classical rowmotion on this kind of posets, and prove that the order in this case equals the order of birational rowmotion.


10.37236/4335 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Darij Grinberg ◽  
Tom Roby

Birational rowmotion — a birational map associated to any finite poset $P$ — has been introduced by Einstein and Propp as a far-reaching generalization of the (well-studied) classical rowmotion map on the set of order ideals of $P$. Continuing our exploration of this birational rowmotion, we prove that it has order $p+q$ on the $\left(  p, q\right)  $-rectangle poset (i.e., on the product of a $p$-element chain with a $q$-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set). Our proof in the case of the rectangle poset uses an idea introduced by Volkov (arXiv:hep-th/0606094) to prove the $AA$ case of the Zamolodchikov periodicity conjecture; in fact, the finite order of birational rowmotion on many posets can be considered an analogue to Zamolodchikov periodicity. We comment on suspected, but so far enigmatic, connections to the theory of root posets.



2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Darij Grinberg ◽  
Tom Roby

International audience Various authors have studied a natural operation (under various names) on the order ideals (equivalently antichains) of a finite poset, here called \emphrowmotion. For certain posets of interest, the order of this map is much smaller than one would naively expect, and the orbits exhibit unexpected properties. In very recent work (inspired by discussions with Berenstein) Einstein and Propp describe how rowmotion can be generalized: first to the piecewise-linear setting of order polytopes, then via detropicalization to the birational setting. In the latter setting, it is no longer \empha priori clear even that birational rowmotion has finite order, and for many posets the order is infinite. However, we are able to show that birational rowmotion has the same order, p+q, for the poset P=[p]×[q] (product of two chains), as ordinary rowmotion. We also show that birational (hence ordinary) rowmotion has finite order for some other classes of posets, e.g., the upper, lower, right and left halves of the poset above, and trees having all leaves on the same level. Our methods are based on those used by Volkov to resolve the type AA (rectangular) Zamolodchikov Periodicity Conjecture.



10.37236/75 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Richard P. Stanley

Promotion and evacuation are bijections on the set of linear extensions of a finite poset first defined by Schützenberger. This paper surveys the basic properties of these two operations and discusses some generalizations. Linear extensions of a finite poset $P$ may be regarded as maximal chains in the lattice $J(P)$ of order ideals of $P$. The generalizations concern permutations of the maximal chains of a wider class of posets, or more generally bijective linear transformations on the vector space with basis consisting of the maximal chains of any poset. When the poset is the lattice of subspaces of ${\Bbb F}_q^n$, then the results can be stated in terms of the expansion of certain Hecke algebra products.



10.37236/9557 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Soichi Okada

Birational rowmotion is a discrete dynamical system on the set of all positive real-valued functions on a finite poset, which is a birational lift of combinatorial rowmotion on order ideals. It is known that combinatorial rowmotion for a minuscule poset has order equal to the Coxeter number, and exhibits the file homomesy phenomenon for refined order ideal cardinality statistics. In this paper we generalize these results to the birational setting. Moreover, as a generalization of birational promotion on a product of two chains, we introduce birational Coxeter-motion on minuscule posets, and prove that it enjoys periodicity and file homomesy.



10.37236/7454 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Michael Joseph

In this paper, we analyze the toggle group on the set of antichains of a poset. Toggle groups, generated by simple involutions, were first introduced by Cameron and Fon-Der-Flaass for order ideals of posets. Recently Striker has motivated the study of toggle groups on general families of subsets, including antichains. This paper expands on this work by examining the relationship between the toggle groups of antichains and order ideals, constructing an explicit isomorphism between the two groups (for a finite poset). We also focus on the rowmotion action on antichains of a poset that has been well-studied in dynamical algebraic combinatorics, describing it as the composition of antichain toggles. We also describe a piecewise-linear analogue of toggling to the Stanley’s chain polytope. We examine the connections with the piecewise-linear toggling Einstein and Propp introduced for order polytopes and prove that almost all of our results for antichain toggles extend to the piecewise-linear setting.



10.37236/6051 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Shahrzad Haddadan

Given a permutation $\tau$ defined on a set of combinatorial objects $S$, together with some statistic $f:S\rightarrow \mathbb{R}$, we say that the triple $\langle S, \tau,f \rangle$ exhibits homomesy if $f$ has the same average along all orbits of $\tau$ in $S$. This phenomenon was observed by Panyushev (2007) and later studied, named and extended by Propp and Roby (2013). Propp and Roby studied homomesy in the set of order ideals in the product of two chains, with two well known permutations, rowmotion and promotion, the statistic being the size of the order ideal. In this paper we extend their results to generalized rowmotion and promotion, together with a wider class of statistics in the product of two chains. Moreover, we derive similar results in other simply described posets. We believe that the framework we set up here can be fruitful in demonstrating homomesy results in order ideals of broader classes of posets. 



10.37236/6463 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Ben P. Zhou

Given a finite poset $P$, we associate a simple graph denoted by $G_P$ with all connected order ideals of $P$ as vertices, and two vertices are adjacent if and only if they have nonempty intersection and are incomparable with respect to set inclusion. We establish a bijection between the set of maximum independent sets of $G_P$ and the set of $P$-forests, introduced by Feray and Reiner in their study of the fundamental generating function $F_P(\textbf{x})$ associated with $P$-partitions. Based on this bijection, in the cases when $P$ is naturally labeled we show that $F_P(\textbf{x})$ can factorise, such that each factor is a summation of rational functions determined by maximum independent sets of a connected component of $G_P$. This approach enables us to give an alternative proof for Feray and Reiner's nice formula of $F_P(\textbf{x})$ for the case of $P$ being a naturally labeled forest with duplications. Another consequence of our result is a product formula to compute the number of linear extensions of $P$.



Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.



Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.



Author(s):  
O.L. Krivanek ◽  
J. TaftØ

It is well known that a standing electron wavefield can be set up in a crystal such that its intensity peaks at the atomic sites or between the sites or in the case of more complex crystal, at one or another type of a site. The effect is usually referred to as channelling but this term is not entirely appropriate; by analogy with the more established particle channelling, electrons would have to be described as channelling either through the channels or through the channel walls, depending on the diffraction conditions.



Sign in / Sign up

Export Citation Format

Share Document