Estimation of wind drift and evaporation losses in sprinkler irrigation of urban green spaces

2018 ◽  
Vol 14 (1) ◽  
pp. 77-96
Author(s):  
M. Naderianfar ◽  
A. Faryabi ◽  
H. Dehghan

The wind drift and evaporation losses (WDEL) are high in arid, semi-arid and windward areas, and reduce the efficiency of the sprinkler irrigation system; therefore, this study was carried out in order to achieve a practical criterion and provide a relationship for accurate estimation of the wind drift and evaporation losses in different atmospheric conditions. The experiments were done at the Meteorological Station of the Faculty of Agriculture of Ferdowsi University of Mashhad using a line-source sprinkler irrigation system based on the single sprinkler installation method. To achieve the objectives of this plan, factorial experiment was performed on PGP sprinkler with regard to the two factors, the pressure of the sprinkler function (with three levels 1.6, 2.5 and 3.4 bar) and the diameter of the nozzle (with three levels of 4, 5 and 6 mm) with three replications (morning, noon and night). Assessing the result of the data variance analysis showed that the effects of pressure, aperture diameter, and time on the wind drift and evaporation losses are not significant. Investigating the main effects of these factors showed that the effect of aperture diameter on irrigation losses is significant at the level of the 1%. In order to further investigate, the comparison of mean losses data in three aperture diameter was done using Duncan′s test. The results indicated that aperture 4 with the losses of 44% had a significant difference with other diameters. This result suggests an increase in losses for smaller diameters due to the small droplets and the increase in wind drift. Also, the comparison of the mean losses data in three times showed that irrigation at noon with the losses of 44% had a significant difference compared to other times due to a significant increase in temperature and radiation of the sun and saturation vapor pressure deficit, and there is no significant difference between morning and evening irrigation. Also, analysis of variance showed that the effect of water pressure change between 1.6 and 4.3 bar does not have a significant effect on the WDEL in this sprinkler. In general, the results showed that increasing wind speed increases the losses of evaporation and wind. Also, this study suggested that changing the irrigation time in areas with hot and dry days, from day to night in summer, leads to a significant reduction of the wind drift and evaporation losses.

Water SA ◽  
2018 ◽  
Vol 44 (3 July) ◽  
Author(s):  
Samy A Marey ◽  
Mohamed SA El Marazky ◽  
Abdulwahed M Aboukarima

Principal component analysis was merged with the artificial neural network (ANN) technique to predict wind drift and evaporation losses (WDEL) from a sprinkler irrigation system. For this purpose, field experiments were conducted to determine WDEL under different conditions. Data from field experiments and previous studies were used as sample data to train the ANN model. Three models were developed to predict WDEL. In the first model (ANN1), 9 neurons (riser height, main nozzle diameter, auxiliary nozzle diameter, discharge rate of the main nozzle, discharge rate of the auxiliary nozzle, operating pressure, wind speed, air temperature and relative humidity) were used as the input layer. In the second model (ANN2), 7 neurons (riser height, operating pressure, wind speed, air temperature and relative humidity, diameter ratio and discharge ratio) were used as the input layer. The third model (ANN3) used a multivariate technique (PC1, PC2, and PC3). Results revealed that the ANN3 model had the highest coefficient of determination (R2 = 0.8349). The R2 values for the ANN1 and ANN2 models were 0.7792 and 0.4807, respectively. It can be concluded that the ANN3 model has the highest predictive capacity.


2017 ◽  
Vol 182 ◽  
pp. 39-54 ◽  
Author(s):  
S.-H. Sadeghi ◽  
T. Peters ◽  
B. Shafii ◽  
M.Z. Amini ◽  
C. Stöckle

2019 ◽  
Vol 225 ◽  
pp. 105759 ◽  
Author(s):  
Emanuele Baifus Manke ◽  
Bernardo Gomes Nörenberg ◽  
Lessandro Coll Faria ◽  
José Maria Tarjuelo ◽  
Alberto Colombo ◽  
...  

2017 ◽  
Vol 67 (2) ◽  
pp. 222-232 ◽  
Author(s):  
E. Maroufpoor ◽  
H. Sanikhani ◽  
S. Emamgholizadeh ◽  
Ö. Kişi

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1325 ◽  
Author(s):  
Kai Zhang ◽  
Bo Song ◽  
Delan Zhu

Laterally-moving sprinkler irrigation systems under low pressure experience problems including small spraying range, low uniformity, surface runoff, and low water utilization rate. To solve these problems, experiments were carried out on a laterally-moving sprinkler irrigation system using a Nelson D3000 sprinkler (Nelson Irrigation Co., Walla Walla, WA, USA) under low pressure, sinusoidal oscillating water flow. The sprinkler intensity and impact kinetic energy intensity distribution were investigated for sprinklers both static and in motion. The test data were used to calculate combined sprinkler intensity and impact kinetic energy intensity uniformity for different nozzle spacings, and were compared with constant water pressure test results. It was found that sinusoidal oscillating water flow can effectively increase spraying range, as well as reducing the peak value of the sprinkler intensity and impact kinetic energy intensity. Within an optimal range of amplitude and nozzle spacing, sinusoidal oscillating water flow significantly improves the combined sprinkler intensity, impact kinetic energy intensity uniformity, and the spraying quality of laterally-moving sprinkler irrigation systems under low pressure conditions. When the average water pressure is 100 kPa, the optimal range of amplitude of sinusoidal oscillating flow applied to the laterally-moving sprinkler irrigation system is 50–60 kPa. When the amplitude is 50 kPa, the optimal nozzle spacing is 3.5–4 m; when the amplitude is 60 kPa, the optimal nozzle spacing is 3.5–4.5 m. The related parameters can provide a reference for the application of sinusoidal oscillating water flow in laterally-moving sprinkler irrigation systems.


2022 ◽  
Author(s):  
Sofiane Gheriani ◽  
Noureddine MEZA ◽  
Djamel BOUTOUTAOU

Abstract In recent years, agriculture development in South-eastern Algeria progressed rapidly which increased the demand for agricultural products. Given that this region is characterized by hard agro-climatic conditions, irrigation seems to be a necessary factor for ensuring optimal development and high agricultural production. Like many irrigation technics widely used, sprinkler irrigation performance was considerably affected by these conditions, mainly evaporation, which causes water losses. This study aims to propose an adequate mathematical model predicting wind drift and evaporation losses under different weather conditions resume by the complex indicator of climatic intensity (ɸ). Results showed that complex indicators of climatic intensity, were significant factors affecting the wind drift and evaporation losses, puissance relationship between wind drift and evaporation losses, and complex indicators of climatic intensity, obtained model are adopted can be useful tools in the determination of the overall losses in terms of environmental conditions (air temperature, relative humidity, and wind speed). Totally 25 measure samples were used for training the model, and 15 measure samples for testing and validation of the model. The developed model for the WDEL modeling shows high good performance with a coefficient of determination (R2) = 0.808, mean squared error (RMSE) = 3.39%, and Mean Absolute Error MAE = 8.41%.


Sign in / Sign up

Export Citation Format

Share Document