scholarly journals Investigating the effect of far and near field to fault on seismic behavior of dual frames with convergent bracing equipped with viscose damper

2019 ◽  
Vol 14 (2) ◽  
pp. 155-168
Author(s):  
Peyman Beiranvand ◽  
Hamidreza Babaali ◽  
Majid Pouraminian
Author(s):  
Shuichi Fujikura ◽  
Yuji Sakakibara ◽  
Minh Hai Nguyen ◽  
Akinori Nakajima

<p>The 2016 Kumamoto Earthquake occurred in central Kyushu, Japan, on April 14th with Mw 6.2 followed by the Mw 7.0 mainshock on April 16th. These earthquakes were mainly caused by the Futagawa fault and Hinagu fault where surface ruptures extended about 34 km long. Some of the bridges located in mountain area and close to the fault were damaged due to these near‐field earthquakes. Oginosaka Bridge is one of them and is a horizontally curved bridge with longitudinal and transverse slope, which is a feature of the bridges located in mountain area. The superstructure was rotated on plan and displaced transversely at both abutments to the opposite side, and there was an evidence of the deck‐abutment pounding in longitudinal direction. In order to investigate the seismic behavior of the curved bridge, nonlinear time‐history analyses including a deck‐abutment pounding interaction were carried out. The deck‐abutment pounding interaction considered in the analyses could capture the post‐impact response of the superstructure. The near‐field ground motions were used for the analyses. The analytical results showed that the curved bridge is susceptible to the deck rotation caused by pounding in longitudinal direction at the deck end under earthquake loading.</p>


1998 ◽  
Vol 14 (2) ◽  
pp. 335-355 ◽  
Author(s):  
Alexander M. Remennikov ◽  
Warren R. Walpole

This paper presents an approach for designing low-rise steel framed buildings with inverted-V-bracing for severe earthquakes. A deterministic design philosophy is used with respect to earthquake-resisting ductile steel braced frames. Seismic behavior of steel frames with inverted-V-bracing is discussed. A series of dynamic analyses was performed on a two-story inverted-V-Braced frame, subjected to near-field ground motions. Ground shaking of this type may be expected in New Zealand, within 10 to 15 km from the Wellington fault, or in the United States in Seismic Zone 4. Post-elastic behavior of braces, beams, and columns is discussed. From the results of dynamic analyses, the interrelations between the seismic forces in frame members are identified. The expressions for the maximum expected seismic design actions in those elements are derived, following the capacity design method. It is believed that this approach will result in stronger and more ductile frames that are capable of resisting the near-field ground motions.


2021 ◽  
pp. 21-35
Author(s):  
Hossein Mirzaaghabeik ◽  
Rafael Holdorf Lopez ◽  
Marcos Souza Lenzi

Structural Health Monitoring (SHM) is a method to conserve the structures and monitor their stress and strain situation. Natural disasters, significantly earthquake could damage the water supply systems, including water tanks. The earthquake could conclude cavitation and water sloshing inside the underground water tank. On the other hand, it can cause human tragedy economically, socially, and ecologically. Therefore, useful and essential measures for repairing and utilizing the underground water tanks after the earthquake should be considered. This research aims to monitor the underground storage tanks subject to near-field and far-field earthquakes, considering the cavitation effect. In this article, the effect of earthquakes on the underground water tanks, considering the seismic behavior and cavitation effect of the underground tank, will be considered. For considering seismic behavior on the storage tanks and their reaction, the ANSYS software has been used to simulate and model them via the finite element method. After that, the prone places to the cavitation wherever the pressures are minus will be detected by the Monte Carlo method. The cavitation effect statistics were examined, and their placement is compared with the results obtained from the Monte Carlo method. The MATLAB codes have been used to make decisions for optimal smart sensor placement via the Monte-Carlo method. Moreover, to decrease the analysis time, the comparison method is taken into account. Finally, underground water tanks were loaded subjected to near-field and far-field earthquakes. The finite element result will be analyzed via the Monte Carlo method, and the best places for installing the smart sensors will be proposed.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

Sign in / Sign up

Export Citation Format

Share Document