scholarly journals Sejtszintű képalkotás a retina in vivo vizsgálatában: jelen és jövő

2021 ◽  
Vol 162 (22) ◽  
pp. 851-860
Author(s):  
András Végh ◽  
Dániel Péter Magda ◽  
Ferenc Kilin ◽  
Anita Csorba ◽  
Mikós Resch ◽  
...  

Összefoglaló. A látószerv különböző betegségei, valamint egyes szisztémás megbetegedések részben vagy kifejezetten az ideghártya károsodásával járnak. A patológia segítségével ma már tudjuk, hogy ezek a betegségek a retina mely rétegének vagy rétegeinek elváltozásait okozzák: míg az időskori maculadegeneratio a külső retinában található fotoreceptorokat érinti kifejezetten a fovea centralis területén, addig a glaucoma a belső retina ganglionsejtjeinek pusztulásával, valamint e sejtek opticusrostjainak károsodásával jár a stratum ganglionaréban és a stratum neurofibrarumban. Az emberi retina sejtjei azonban egyelőre nem maradéktalanul karakterizáltak, az egyes sejttípusok számát csak becsülni tudjuk, így nem írhatók le az egyes sejtszintű elváltozások sem kellő pontossággal. A szövettani feldolgozás és vizsgálat megfelelő részletességgel tájékoztat a diagnózisról és az elváltozás súlyosságáról, értelemszerűen azonban ez a módszer in vivo nem használható a mindennapi klinikai gyakorlatban. A sejtszintű elváltozások ismerete az egyes kórképekben felvetette és szükségessé tette olyan in vivo, a klinikumban is alkalmazható vizsgálómódszerek kifejlesztését, amelyek lehetőséget nyújtanak a retina neurális és egyéb sejtjeinek celluláris és szubcelluláris szintű vizsgálatára, ideértve a vér alakos elemeit is, amelyek egészséges vagy neovascularis eredetű erekben áramlanak. A jelenleg is használt klinikai vizsgálatok mellett ezek a képalkotó módszerek segítségül szolgálhatnak a diagnózis megerősítésében vagy elvetésében, emellett az elváltozás súlyosságának megítélésében, valamint a progresszió vagy remisszió monitorozásában. Orv Hetil. 2021; 162(22): 851–860. Summary. Diseases of the visual system as well as many systemic illnesses are usually associated with retinal damage. With the help of pathology, we can clearly identify the affected layer(s): while age-related macular degeneration mostly damages the photoreceptors in the outer retina at the central fovea, glaucoma promotes ganglion cell death in the ganglion cell layer and damages respective neural fibers. However, the diverse cell types of the human retina have not been fully characterized yet, thus in most cases our knowledge on cellular pathologies is not precise enough. While histopathological preparation and examination of the retinal tissue provide more detailed information about the diagnosis and the severity of the condition, unfortunately, it cannot be used in vivo in everyday clinical practice. Our understanding of the cellular changes in different diseases has revealed a need for new everyday clinical examination methods that can be used in vivo to asses cellular and subcellular changes in neural and other cells of the retina, such as blood cells flowing in healthy vessels or in vessels of neovascular origin. In addition to the currently used clinical examination methods, these imaging methods could help confirm or dismiss diagnoses, assess the severity of a condition, and monitor disease progression or remission. Orv Hetil. 2021; 162(22): 851–860.

2017 ◽  
Vol 114 (3) ◽  
pp. 586-591 ◽  
Author(s):  
Ethan A. Rossi ◽  
Charles E. Granger ◽  
Robin Sharma ◽  
Qiang Yang ◽  
Kenichi Saito ◽  
...  

Although imaging of the living retina with adaptive optics scanning light ophthalmoscopy (AOSLO) provides microscopic access to individual cells, such as photoreceptors, retinal pigment epithelial cells, and blood cells in the retinal vasculature, other important cell classes, such as retinal ganglion cells, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. Here we show that the individual somas of neurons within the retinal ganglion cell (RGC) layer can be imaged with a modification of confocal AOSLO, in both monkeys and humans. Human images of RGC layer neurons did not match the quality of monkey images for several reasons, including safety concerns that limited the light levels permissible for human imaging. We also show that the same technique applied to the photoreceptor layer can resolve ambiguity about cone survival in age-related macular degeneration. The capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases, such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain.


2021 ◽  
Vol 118 (41) ◽  
pp. e2102975118
Author(s):  
Meenakshi Ambati ◽  
Ivana Apicella ◽  
Shao-bin Wang ◽  
Siddharth Narendran ◽  
Hannah Leung ◽  
...  

The atrophic form of age-related macular degeneration (dry AMD) affects nearly 200 million people worldwide. There is no Food and Drug Administration (FDA)-approved therapy for this disease, which is the leading cause of irreversible blindness among people over 50 y of age. Vision loss in dry AMD results from degeneration of the retinal pigmented epithelium (RPE). RPE cell death is driven in part by accumulation of Alu RNAs, which are noncoding transcripts of a human retrotransposon. Alu RNA induces RPE degeneration by activating the NLRP3-ASC inflammasome. We report that fluoxetine, an FDA-approved drug for treating clinical depression, binds NLRP3 in silico, in vitro, and in vivo and inhibits activation of the NLRP3-ASC inflammasome and inflammatory cytokine release in RPE cells and macrophages, two critical cell types in dry AMD. We also demonstrate that fluoxetine, unlike several other antidepressant drugs, reduces Alu RNA–induced RPE degeneration in mice. Finally, by analyzing two health insurance databases comprising more than 100 million Americans, we report a reduced hazard of developing dry AMD among patients with depression who were treated with fluoxetine. Collectively, these studies identify fluoxetine as a potential drug-repurposing candidate for dry AMD.


2021 ◽  
Author(s):  
Feng Wang ◽  
Stefan Hadzic ◽  
Elsa T. Roxlau ◽  
Baerbel Fuehler ◽  
Annabella Janise-Libawski ◽  
...  

Abstract Cigarette smoke has been identified as a major risk factor for the development of age-related macular degeneration (AMD). As an alternative of conventional cigarette (C-cigarette), electronic cigarette (E-cigarette) has been rapidly promoted and used globally. The increasing usage of E-cigarette raises concerns with regard to long-term consequences related to retinal tissue. In the present study, a controlled study in mice models was conducted to probe the comprehensive effects of E-cigarette on retina, RPE and choroid tissues by (1) comparing the effect of C-cigarette smoke and E-cigarette smoke on retina; (2) determining the effects of E-cigarette vapor on the RPE and analyzing the changes with regard to inflammatory and angiogenic mediators in retina/RPE/choroid. The data showed that C-cigarette smoke exposure promoted an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor developed inflammatory and angiogenic reactions more pronounced in RPE and choroid, while nicotine-containing E-cigarette vapor caused even a more serious reaction. Both, inflammatory and pro-angiogenic reactions increased with the extension of exposure time. These results demonstrate that exposure to C-cigarette smoke is harmful to the retina. Likewise, the exposure to E-cigarette vapor (with or without nicotine) increases the occurrence and progression of inflammatory and angiogenic stimuli in the retina, which might be similar effects causing the onset of wet AMD in humans.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Efrat Naaman ◽  
Sarah Ya’ari ◽  
Chen Itzkovich ◽  
Shadi Safuri ◽  
Flora Macsi ◽  
...  

AbstractAmyloid-β (Aβ), reported as a significant constituent of drusen, was implicated in the pathophysiology of age-related macular degeneration (AMD), yet the identity of the major pathogenic Aβ species in the retina has remained hitherto unclear. Here, we examined the in-vivo retinal impact of distinct supramolecular assemblies of Aβ. Fibrillar (Aβ40, Aβ42) and oligomeric (Aβ42) preparations showed clear biophysical hallmarks of amyloid assemblies. Measures of retinal structure and function were studied longitudinally following intravitreal administration of the various Aβ assemblies in rats. Electroretinography (ERG) delineated differential retinal neurotoxicity of Aβ species. Oligomeric Aβ42 inflicted the major toxic effect, exerting diminished ERG responses through 30 days post injection. A lesser degree of retinal dysfunction was noted following treatment with fibrillar Aβ42, whereas no retinal compromise was recorded in response to Aβ40 fibrils. The toxic effect of Aβ42 architectures was further reflected by retinal glial response. Fluorescence labelling of Aβ42 species was used to detect their accumulation into the retinal tissue. These results provide conceptual evidence of the differential toxicity of particular Aβ species in-vivo, and promote the mechanistic understanding of their retinal pathogenicity. Stratifying the impact of pathological Aβ aggregation in the retina may merit further investigation to decipher the pathophysiological relevance of processes of molecular self-assembly in retinal disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


2009 ◽  
Vol 37 (6) ◽  
pp. 1207-1213 ◽  
Author(s):  
Yan Qiu ◽  
Coralie Hoareau-Aveilla ◽  
Sebastian Oltean ◽  
Steven J. Harper ◽  
David O. Bates

Anti-angiogenic VEGF (vascular endothelial growth factor) isoforms, generated from differential splicing of exon 8, are widely expressed in normal human tissues but down-regulated in cancers and other pathologies associated with abnormal angiogenesis (cancer, diabetic retinopathy, retinal vein occlusion, the Denys–Drash syndrome and pre-eclampsia). Administration of recombinant VEGF165b inhibits ocular angiogenesis in mouse models of retinopathy and age-related macular degeneration, and colorectal carcinoma and metastatic melanoma. Splicing factors and their regulatory molecules alter splice site selection, such that cells can switch from the anti-angiogenic VEGFxxxb isoforms to the pro-angiogenic VEGFxxx isoforms, including SRp55 (serine/arginine protein 55), ASF/SF2 (alternative splicing factor/splicing factor 2) and SRPK (serine arginine domain protein kinase), and inhibitors of these molecules can inhibit angiogenesis in the eye, and splice site selection in cancer cells, opening up the possibility of using splicing factor inhibitors as novel anti-angiogenic therapeutics. Endogenous anti-angiogenic VEGFxxxb isoforms are cytoprotective for endothelial, epithelial and neuronal cells in vitro and in vivo, suggesting both an improved safety profile and an explanation for unpredicted anti-VEGF side effects. In summary, C-terminal distal splicing is a key component of VEGF biology, overlooked by the vast majority of publications in the field, and these findings require a radical revision of our understanding of VEGF biology in normal human physiology.


2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


Gene Therapy ◽  
2021 ◽  
Author(s):  
Anna K. Dreismann ◽  
Michelle E. McClements ◽  
Alun R. Barnard ◽  
Elise Orhan ◽  
Jane P. Hughes ◽  
...  

AbstractDry age-related macular degeneration (AMD) is characterised by loss of central vision and currently has no approved medical treatment. Dysregulation of the complement system is thought to play an important role in disease pathology and supplementation of Complement Factor I (CFI), a key regulator of the complement system, has the potential to provide a treatment option for AMD. In this study, we demonstrate the generation of AAV constructs carrying the human CFI sequence and expression of CFI in cell lines and in the retina of C57BL/6 J mice. Four codon optimised constructs were compared to the most common human CFI sequence. All constructs expressed CFI protein; however, most codon optimised sequences resulted in significantly reduced CFI secretion compared to the non-optimised CFI sequence. In vivo expression analysis showed that CFI was predominantly expressed in the RPE and photoreceptors. Secreted protein in vitreous humour was demonstrated to be functionally active. The findings presented here have led to the formulation of an AAV-vectored gene therapy product currently being tested in a first-in-human clinical trial in subjects with geographic atrophy secondary to dry AMD (NCT03846193).


2018 ◽  
Vol 243 (17-18) ◽  
pp. 1256-1264 ◽  
Author(s):  
Xincheng Yao ◽  
Taeyoon Son ◽  
Tae-Hoon Kim ◽  
Yiming Lu

Age-related macular degeneration (AMD) is the leading cause of severe vision loss and legal blindness. It is known that retinal photoreceptors are the primary target of AMD. Therefore, a reliable method for objective assessment of photoreceptor function is needed for early detection and reliable treatment evaluation of AMD and other eye diseases such as retinitis pigmentosa that are known to cause photoreceptor dysfunctions. Stimulus-evoked intrinsic optical signal (IOS) changes promise a unique opportunity for objective assessment of physiological function of retinal photoreceptor and inner neurons. Instead of a comprehensive review, this mini-review is to provide a brief summary of our recent in vitro and in vivo optical coherence tomography (OCT) studies of stimulus-evoked IOS changes in animal retinas. By providing excellent axial resolution to differentiate individual retinal layers, depth-resolved OCT revealed rapid IOS response at the photoreceptor outer segment. The fast photoreceptor-IOS occurred almost right away (∼ 2 ms) after the onset of retinal stimulation, differentiating itself from slow IOS changes correlated with inner neural and hemodynamic changes. Further development of the functional IOS instruments and retinal stimulation protocols may provide a feasible solution to pursue clinical application of functional IOS imaging for objective assessment of human photoreceptors. Impact statement Retinal photoreceptors are the primary target of age-related macular degeneration (AMD) which is the leading cause of severe vision loss and legal blindness. An objective method for functional assessment of photoreceptor physiology can benefit early detection and better treatment evaluation of AMD and other eye diseases that are known to cause photoreceptor dysfunctions. This article summarizes in vitro study of IOS mechanisms and in vivo demonstration of IOS imaging of intact animals. Further development of the functional IOS imaging may provide a revolutionary solution to achieve objective assessment of human photoreceptors.


Sign in / Sign up

Export Citation Format

Share Document