Conceptual fracture network model of the crystalline basement of the Szeghalom Dome (Pannonian Basin, SE Hungary)

2004 ◽  
Vol 47 (1) ◽  
pp. 19-34 ◽  
Author(s):  
Tivadar M. Tóth ◽  
É. Szűcs ◽  
Félix Schubert ◽  
Cs. Hollós
2020 ◽  
Vol 193 ◽  
pp. 107393
Author(s):  
Yongpeng Sun ◽  
Kai Gao ◽  
Zhihao Yu ◽  
Yanchao Fang ◽  
Yilin Chang ◽  
...  

2021 ◽  
Author(s):  
Alberto Ceccato ◽  
Giulia Tartaglia ◽  
Giulio Viola ◽  
Marco Antonellini

<p>Fractured crystalline basement units are attracting increasing attention as potential unconventional reservoirs for natural (oil, heat and water) resources and as potential waste (nuclear, CO<sub>2</sub>) disposal sites. The focus of the current efforts is the characterisation of the structural permeability of fractured crystalline basement units, which is primarily related to the geology, geometry, and spatial characteristics of fracture networks. Fracture network properties may be scale–dependent or independent. Thus, a multi–scale characterisation of fracture networks is usually recommended to quantify the scale–variability of properties and, eventually, the related predictive scaling laws. Fracture lineament maps are schematic representations of fracture distributions obtained from either manual or automated interpretation of 2D digital models of the earth surface at different scales. From the quantitative analysis on fracture lineament maps, we can retrieve invaluable information on the scale–dependence of fracture network properties.</p><p>Here we present the results of the quantification of fracture network and fracture set properties (orientation, length, spacing, spatial organisation) from multi– (outcrop to regional) scale 2D lineament maps of two crystalline basement study areas of Western Norway (Bømlo island and Kråkenes). Lineament maps were obtained from the manual interpretation of orthophotos and 2D digital terrain models retrieved from UAV–drone and LiDAR surveys.</p><p>Analyses aimed at the quantification of: (i) scaling laws for fracture length cumulative distributions, defined through a statistically–robust fitting method (Maximum Likelihood Estimations coupled with Kolmogorov–Smirnov tests); (ii) variability of orientation sets as a function of scale; (iii) spatial organisation of fracture sets among scales; (iv) fractal characteristics of fracture networks (fractal exponent). Results suggest that: (i) a statistical analysis considering variable censoring and truncation effects allows to confidently define the best–fitting scaling laws; (ii) the analysis of orientation variability of fracture sets among different scales may provide important constraints about the geometrical complexity of fracture and fault zones; (iii) the statistical analysis of 2D spacing variability and fracture intensity can be adopted to quantify fracture spatial organisation at different scales.</p><p>A statistically robust analysis of the scaling laws, length distributions, spacing, and spatial organisation of lineaments on 2D maps provides reliable results also where only partial or incomplete dataset/lineament maps are available. Such properties are the fundamental input parameters for conceptual (geologic) and numerical (discrete fracture network, DFN) models of fractured crystalline basement reservoirs. Therefore, a statistically robust analysis of fracture lineament maps may help to improve the accuracy of conceptual and numerical models.</p>


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050013
Author(s):  
RICHENG LIU ◽  
LIYUAN YU ◽  
YANG GAO ◽  
MING HE ◽  
YUJING JIANG

This study proposed analytical solutions for permeability of a fractal-like tree network model with fractures having variable widths, which has not been reported before, if any. This model is more realistic with natural fracture networks than the traditional constant width fracture network models. The results show that considering fracture width variations decreases the permeability. Taking the fracture width ratio that equals to 0.6 and the total number of branching levels that equals to 30 as an example, the permeability decreases by more than three orders of magnitude with respect to that of a constant width fracture network model. The fracture length ratio plays a more significant role in permeability when it is larger than 0.8 than that is less than 0.8. The permeability is more sensitive to the fracture aperture ratio that is less than 0.8. When the total number of branching levels is large (i.e. 30), the permeability changes significantly (i.e. more than three orders of magnitude); whereas when the total number of branching levels is small (i.e. 5), the permeability varies in a small range (i.e. less than one order of magnitude). When taking into account the relationships among fracture length ratio, fracture aperture ratio and fracture width ratio, the parameters can be easily obtained and analytical solutions for permeability can also be easily derived. The empirical function for predicting critical hydraulic gradient is proposed, which can be used to estimate whether the fluid flow is within the linear flow regime and whether the proposed analytical solutions are applicable in the present study.


2020 ◽  
Vol 140 ◽  
pp. 104155 ◽  
Author(s):  
H. Barcelona ◽  
R. Maffucci ◽  
D. Yagupsky ◽  
M. Senger ◽  
S. Bigi

Sign in / Sign up

Export Citation Format

Share Document