scholarly journals From production to selection of interpretations for novel conceptual combinations: A developmental approach

2011 ◽  
Vol 58 (4) ◽  
pp. 391-416
Author(s):  
Sandra Jhean-Larose ◽  
Bruno Lecoutre ◽  
Guy Denhière
1977 ◽  
Vol 6 (1) ◽  
Author(s):  
Wolfgang Jagodzinski ◽  
Michael Zängle

AbstractThis paper is about a causal model of role-taking recently suggested by BERTRAM and BERTRAM. The model tries to combine aspects of the cognitive-developmental approach as proposed by BRUNER, PIAGET, and WYGOTSKI,and symbolic interactionism as advocated by LINDESMITH and STRAUSS. While the selection of variables is handled rather carefully, the identification and testing procedures may be criticized in three respects: They are tautological because the same equations are used for identifying and testing the model, they are contradictory because identification procedures applicable to recursive models only are applied to a nonrecursive model, and they are fragmentary because only a few although the most important of the possible comparisons of implied and observed correlations are computed. Thus, some of the author’s major conclusions seem not to warranted by the rules of path analysis.


2019 ◽  
Vol 62 (8S) ◽  
pp. 2946-2962 ◽  
Author(s):  
Melissa A. Redford

Purpose Current approaches to speech production aim to explain adult behavior and so make assumptions that, when taken to their logical conclusion, fail to adequately account for development. This failure is problematic if adult behavior can be understood to emerge from the developmental process. This problem motivates the proposal of a developmentally sensitive theory of speech production. The working hypothesis, which structures the theory, is that feedforward representations and processes mature earlier than central feedback control processes in speech production. Method Theoretical assumptions that underpin the 2 major approaches to adult speech production are reviewed. Strengths and weaknesses are evaluated with respect to developmental patterns. A developmental approach is then pursued. The strengths of existing theories are borrowed, and the ideas are resynthesized under the working hypothesis. The speech production process is then reimagined in developmental stages, with each stage building on the previous one. Conclusion The resulting theory proposes that speech production relies on conceptually linked representations that are information-reduced holistic perceptual and motoric forms, constituting the phonological aspect of a system that is acquired with the lexicon. These forms are referred to as exemplars and schemas, respectively. When a particular exemplar and schema are activated with the selection of a particular lexical concept, their forms are used to define unique trajectories through an endogenous perceptual–motor space that guides implementation. This space is not linguistic, reflecting its origin in the prespeech period. Central feedback control over production emerges with failures in communication and the development of a self-concept.


2019 ◽  
Vol 42 ◽  
Author(s):  
Gian Domenico Iannetti ◽  
Giorgio Vallortigara

Abstract Some of the foundations of Heyes’ radical reasoning seem to be based on a fractional selection of available evidence. Using an ethological perspective, we argue against Heyes’ rapid dismissal of innate cognitive instincts. Heyes’ use of fMRI studies of literacy to claim that culture assembles pieces of mental technology seems an example of incorrect reverse inferences and overlap theories pervasive in cognitive neuroscience.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


1978 ◽  
Vol 48 ◽  
pp. 515-521
Author(s):  
W. Nicholson

SummaryA routine has been developed for the processing of the 5820 plates of the survey. The plates are measured on the automatic measuring machine, GALAXY, and the measures are subsequently processed by computer, to edit and then refer them to the SAO catalogue. A start has been made on measuring the plates, but the final selection of stars to be made is still a matter for discussion.


Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


Author(s):  
P. M. Lowrie ◽  
W. S. Tyler

The importance of examining stained 1 to 2μ plastic sections by light microscopy has long been recognized, both for increased definition of many histologic features and for selection of specimen samples to be used in ultrastructural studies. Selection of specimens with specific orien ation relative to anatomical structures becomes of critical importance in ultrastructural investigations of organs such as the lung. The uantity of blocks necessary to locate special areas of interest by random sampling is large, however, and the method is lacking in precision. Several methods have been described for selection of specific areas for electron microscopy using light microscopic evaluation of paraffin, epoxy-infiltrated, or epoxy-embedded large blocks from which thick sections were cut. Selected areas from these thick sections were subsequently removed and re-embedded or attached to blank precasted blocks and resectioned for transmission electron microscopy (TEM).


Author(s):  
K.-H. Herrmann ◽  
D. Krahl ◽  
H.-P Rust

The high detection quantum efficiency (DQE) is the main requirement for an imagerecording system used in electron microscopy of radiation-sensitive specimens. An electronic TV system of the type shown in Fig. 1 fulfills these conditions and can be used for either analog or digital image storage and processing [1], Several sources of noise may reduce the DQE, and therefore a careful selection of various elements is imperative.The noise of target and of video amplifier can be neglected when the converter stages produce sufficient target electrons per incident primary electron. The required gain depends on the type of the tube and also on the type of the signal processing chosen. For EBS tubes, for example, it exceeds 10. The ideal case, in which all impinging electrons create uniform charge peaks at the target, is not obtainable for several reasons, and these will be discussed as they relate to a system with a scintillator, fiber-optic and photo-cathode combination as the first stage.


Author(s):  
L.E. Murr ◽  
A.B. Draper

The industrial characterization of the machinability of metals and alloys has always been a very arbitrarily defined property, subject to the selection of various reference or test materials; and the adoption of rather naive and misleading interpretations and standards. However, it seems reasonable to assume that with the present state of knowledge of materials properties, and the current theories of solid state physics, more basic guidelines for machinability characterization might be established on the basis of the residual machined microstructures. This approach was originally pursued by Draper; and our presentation here will simply reflect an exposition and extension of this research.The technique consists initially in the production of machined chips of a desired test material on a horizontal milling machine with the workpiece (specimen) mounted on a rotary table vice. A single cut of a specified depth is taken from the workpiece (0.25 in. wide) each at a new tool location.


Sign in / Sign up

Export Citation Format

Share Document