Applications of Transmission Electron Microscopy in the Characterization of Metal Machinability

Author(s):  
L.E. Murr ◽  
A.B. Draper

The industrial characterization of the machinability of metals and alloys has always been a very arbitrarily defined property, subject to the selection of various reference or test materials; and the adoption of rather naive and misleading interpretations and standards. However, it seems reasonable to assume that with the present state of knowledge of materials properties, and the current theories of solid state physics, more basic guidelines for machinability characterization might be established on the basis of the residual machined microstructures. This approach was originally pursued by Draper; and our presentation here will simply reflect an exposition and extension of this research.The technique consists initially in the production of machined chips of a desired test material on a horizontal milling machine with the workpiece (specimen) mounted on a rotary table vice. A single cut of a specified depth is taken from the workpiece (0.25 in. wide) each at a new tool location.

1995 ◽  
Vol 416 ◽  
Author(s):  
Othon R. Monteiro ◽  
Zhi Wang ◽  
Ian G. Brown

ABSTRACTAn evaluation of the use of intermediate layers for promoting adhesion between diamond and Fe and Ni base alloys is presented. The lack of adhesion between diamond and such alloys has prevented its use as a protective coating in applications at intermediate temperatures. In this study we use a combination of plasma assisted deposition techniques together with controlled bias of the substrate in order to deposit intermediate layers, and simultaneously achieve a thorough intermixing of the elements at the interface, in order to increase the adhesion between the layers. We have compared the performance of different carbide forming metals, as well as other materials. Properties considered in the selection of the appropriate intermediate layers are: chemical affinity with carbon, thermal expansion coefficient, mechanical properties, and adhesion to diamond and to the base metal as well. In the case of multiple layers, adhesion strength was measured after every new layer was deposited, in order to identify any weak links of the composite structure. Transmission electron microscopy was used to determine the microstructure and phases. An analysis is provided of the resulting performance on the basis of the microstructure.


Author(s):  
P. M. Lowrie ◽  
W. S. Tyler

The importance of examining stained 1 to 2μ plastic sections by light microscopy has long been recognized, both for increased definition of many histologic features and for selection of specimen samples to be used in ultrastructural studies. Selection of specimens with specific orien ation relative to anatomical structures becomes of critical importance in ultrastructural investigations of organs such as the lung. The uantity of blocks necessary to locate special areas of interest by random sampling is large, however, and the method is lacking in precision. Several methods have been described for selection of specific areas for electron microscopy using light microscopic evaluation of paraffin, epoxy-infiltrated, or epoxy-embedded large blocks from which thick sections were cut. Selected areas from these thick sections were subsequently removed and re-embedded or attached to blank precasted blocks and resectioned for transmission electron microscopy (TEM).


Author(s):  
O. L. Shaffer ◽  
M.S. El-Aasser ◽  
C. L. Zhao ◽  
M. A. Winnik ◽  
R. R. Shivers

Transmission electron microscopy is an important approach to the characterization of the morphology of multiphase latices. Various sample preparation techniques have been applied to multiphase latices such as OsO4, RuO4 and CsOH stains to distinguish the polymer phases or domains. Radiation damage by an electron beam of latices imbedded in ice has also been used as a technique to study particle morphology. Further studies have been developed in the use of freeze-fracture and the effect of differential radiation damage at liquid nitrogen temperatures of the latex particles embedded in ice and not embedded.Two different series of two-stage latices were prepared with (1) a poly(methyl methacrylate) (PMMA) seed and poly(styrene) (PS) second stage; (2) a PS seed and PMMA second stage. Both series have varying amounts of second-stage monomer which was added to the seed latex semicontinuously. A drop of diluted latex was placed on a 200-mesh Formvar-carbon coated copper grid.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


Author(s):  
R. J. Lauf ◽  
H. Keating

The preparation of fragmented or particulate ceramic materials for transmission electron microscopy (TEM) examination has traditionally been difficult, particularly if a durable, permanent specimen is desired. Furthermore, most established methods for dealing with micron- and submicron-sized samples (e.g., dispersion in plastic films) do not permit selection of orientations or ion thinning. A technique has been developed that is useful for a variety of materials, permits the selection of specimen orientation, is compatible with ion milling requirements, and produces a durable specimen that can be reexamined later if necessary.


Sign in / Sign up

Export Citation Format

Share Document