Investigation of C-14 in the CRUD collected on the coolant filter for safety disposal of radioactive waste containing C-14 (II) – Chemical alteration of ion exchange resin under simulated condition in primary coolant of PWR

MRS Advances ◽  
2018 ◽  
Vol 3 (19) ◽  
pp. 1039-1050 ◽  
Author(s):  
Kotaro Nakata ◽  
Michihiko Hironaga ◽  
Daisuke Minato ◽  
Kenichiro Kino ◽  
Akira Sakashita ◽  
...  

ABSTRACTThe formation mechanism and chemical form of insoluble C-14 found in PWR need to be examined in order to predict its environmental behavior after disposal. This study investigates the alteration of ion-exchange resin by heating and irradiation, because past studies indicated the ion-exchange resin may be the origin of insoluble C-14.Resin was heated at 300 °C in solution with low oxygen content to simulate the environment of PWR coolant. The sulfo group was found to detach within 8 h, and structures similar to polystyrene were remained. This is followed by detachment of H from the alkyl group, condensation reaction, and the formation of amorphous carbon-like structure. After heating for 24 and 96 h, the resin was irradiated by 60Co γ-rays in the solution. The FT-IR and TG measurements after irradiation suggested that OH and COOH groups were formed on the surface of the resin. These functional groups may be involved in reactions that finally form the amorphous carbon.In addition, the characteristics of heated and irradiated resin were compared to real insoluble-C (CRUD) sample in PWR (in Appendix).

2009 ◽  
Vol 27 (7) ◽  
pp. 661-670 ◽  
Author(s):  
Faraj A. Abuilaiwi ◽  
Muataz Ali Atieh ◽  
Mansor B. Ahmad ◽  
Nor Azowa Ibrahim ◽  
Mohamad Zaki Ab. Rahman ◽  
...  

Grafted rubberwood fibre was converted to polyamidoxime ion-exchange resin in order to remove heavy metal ions from aqueous solution. The cation-exchange resin existed predominantly in the syn-hydroxyamino form. The water uptake by the resin was ca. 31 g/g dry resin while its hydrogen ion capacity was 3.6 mmol/g. The adsorption capacity of the resin towards different metal ions from wastewater was determined at different pH values within the range 1–6. The prepared chelating ion-exchanger exhibited the highest adsorption capacity towards Cu2+ ions (3.83 mmol/g), followed by Cd2+, Fe3+, Pb2+, Ni2+ and Co3+ ions, respectively. The results showed that the adsorption capacity depended on the solution pH. Polyamidoxime ion-exchange resin was also used to separate Co3+ and Ni2+ ions from Cu2+ ions using a column technique. On passing Cu2+/Ni2+ and Cu2+/Co3+ ion mixtures through the resin at pH 3, Cu2+ ions were adsorbed by the resin but no sorption of Ni2+ or Co3+ ions was detected. Approximately 98% of the Cu2+ ions could be desorbed from the resin. FT-IR spectroscopy was used to confirm the conversion of polyacrylonitrile-g-rubberwood fibre to polyamidoxime.


2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


1977 ◽  
Vol 49 (6) ◽  
pp. 764-766 ◽  
Author(s):  
Toshihiko. Hanai ◽  
Harold F. Walton

RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4478-4488
Author(s):  
Sivaprakasam Anbazhagan ◽  
Venugopal Thiruvengadam ◽  
Anandhakumar Sukeri

We have demonstrated a high Pb2+ removal efficiency (73.45%) from wastewater using a Prosopis juliflora-seed-modified Amberlite IRA-400 Cl− ion-exchange resin (SMA resin).


Sign in / Sign up

Export Citation Format

Share Document