Optimization of Chemical Vapor Deposition Process for Carbon Nanotubes Growth on Stainless Steel: Towards Efficient Hydrogen Evolution Reaction

MRS Advances ◽  
2020 ◽  
Vol 5 (8-9) ◽  
pp. 363-368
Author(s):  
Haojie Zhang ◽  
Juliana Martins de Souza e Silva ◽  
Cristine Santos de Oliveira ◽  
Xubin Lu ◽  
Stefan L. Schweizer ◽  
...  

ABSTRACTWe report a novel strategy to render stainless steel (SS) a more versatile material that is suitable to be used as the substrate for preparing electrodes for efficient hydrogen evolution by interface engineering. Our strategy involves the growth of carbon nanotubes (CNTs) by atmospheric pressure chemical vapor deposition (APCVD) as the interface material on the surface of SS. We optimized the procedure to prepare CNTs/SS and demonstrate a higher activity of the CNTs/SS prepared at 700 °C for the hydrogen evolution reaction (HER) when compared to samples prepared at other temperatures. This can be attributed to the higher number of defects and the higher content of pyrrolic N obtained at this temperature. Our strategy offers a new approach to employ SS as a substrate for the preparation of highly efficient electrodes and has the potential to be widely used in electrochemistry.

2018 ◽  
Vol 52 (22) ◽  
pp. 3039-3044 ◽  
Author(s):  
Daniel Choi ◽  
Eui-Hyeok Yang ◽  
Waqas Gill ◽  
Aaron Berndt ◽  
Jung-Rae Park ◽  
...  

We have demonstrated a three-dimensional composite structure of graphene and carbon nanotubes as electrodes for super-capacitors. The goal of this study is to fabricate and test the vertically grown carbon nanotubes on the graphene layer acting as a spacer to avoid self-aggregation of the graphene layers while realizing high active surface area for high energy density, specific capacitance, and power density. A vertical array of carbon nanotubes on silicon substrates was grown by a low-pressure chemical vapor deposition process using anodized aluminum oxide nanoporous template fabricated on silicon substrates. Subsequently, a graphene layer was grown by another low-pressure chemical vapor deposition process on top of a vertical array of carbon nanotubes. The Raman spectra confirmed the successful growth of carbon nanotubes followed by the growth of high-quality graphene. The average measured capacitance of the three-dimensional composite structure of graphene-carbon nanotube was 780 µFcm−2 at 100 mVs−1.


Sign in / Sign up

Export Citation Format

Share Document