Microstructure of LaB6-base thick film resistors

1992 ◽  
Vol 7 (8) ◽  
pp. 2225-2229 ◽  
Author(s):  
Z.G. Li ◽  
P.F. Carcia ◽  
P.C. Donohue

The microstructure of LaB6-base thick film resistors was investigated by cross-sectional transmission electron microscopy. The specimens were prepared by a technique that polished them to a thin wedge, thus avoiding ion-milling and permitting imaging over a distance of tens of microns. The resistor microstructure contained a finely divided electrically conductive phase of TaB2 and nonconducting crystals of CaTa4O11, formed during high temperature processing of glass and LaB6 ingredients of the thick film ink. Using higher surface area ingredients virtually suppressed the formation of CaTa4O11 crystals, and the microstructure became more uniform. Resistors made with higher surface area intermediates also had better voltage withstanding properties.

Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


1990 ◽  
Vol 199 ◽  
Author(s):  
Jeffrey T. Wetzel ◽  
K. L. Kavanagh

ABSTRACTThis paper summarizes methods used to create cross-sectional samples for transmission electron microscopy and introduces another variant of the technique all of which rely upon some combination of lithographic patterning and reactive ion etching. The basic idea pursued in using these techniques was to form, from a preselected location, samples that had a large transparent area without use of mechanical polishing or ion milling. Samples were successfully prepared in this manner, but room for improvement remains due to the limited range of diffraction conditions available for imaging or diffraction pattern formation.


1997 ◽  
Vol 480 ◽  
Author(s):  
Jeong Soo Lee ◽  
Hyun Ha Kim ◽  
Young Woo Jeong

AbstractThe cross-sectional transmission electron microscopy (TEM) specimens of Pt/Ti/SiO2/Si, RuO2/SiO2/Si, W/TiN/SiO2/Si, (Pb,La)TiO3/Pt/MgO, Bi4Ti3O12/Lal-xCaxMnO3/MgO, and GaN/Al2O3 were successfully made by the rocking-angle ion-milling technique. The differential thinning problems could be effectively mitigated when the rocking-angle and the ion-beam incidence angle were optimized for each heterostructure. It was found that the sputtering yield ratio between the layer milled most quickly and the layer milled most slowly is one of the important factors which determine the optimum rocking-angle ion-milling condition. The atomic force microscopy study on the surface topography of the cross-sectional Pt/Ti/SiO2/Si TEM sample after ion-milling provided quantitative information about the effects of the rocking-angle variation. A parameter which is the ratio between the layer with a minimum electron transparency and the layer with a maximum electron transparency was suggested.


2014 ◽  
Vol 20 (5) ◽  
pp. 1471-1478 ◽  
Author(s):  
Esperanza Luna ◽  
Javier Grandal ◽  
Eva Gallardo ◽  
José M. Calleja ◽  
Miguel Á. Sánchez-García ◽  
...  

AbstractWe discuss observations of InN nanowires (NWs) by plan-view high-resolution transmission electron microscopy (TEM). The main difficulties arise from suitable methods available for plan-view specimen preparation. We explore different approaches and find that the best results are obtained using a refined preparation method based on the conventional procedure for plan-view TEM of thin films, specifically modified for the NW morphology. The fundamental aspects of such a preparation are the initial mechanical stabilization of the NWs and the minimization of the ion-milling process after dimpling the samples until perforation. The combined analysis by plan-view and cross-sectional TEM of the NWs allows determination of the degree of strain relaxation and reveals the formation of an unintentional shell layer (2–3-nm thick) around the InN NWs. The shell layer is composed of bcc In2O3 nanocrystals with a preferred orientation with respect to the wurtzite InN: In2O3 [111] || InN [0001] and In2O3 <110> || InN< $$ 11\bar 20 $$ >.


1991 ◽  
Vol 254 ◽  
Author(s):  
J. P. McCaffrey

AbstractA small-angle cleavage technique has been developed for transmission electron microscopy (TEM) of semiconductors and related materials. In this technique, samples are prepared by back-thinning the material to a prescribed thickness, back-scribing the material at a specific angle to a standard cleavage plane, and cleaving along these scribe lines. A second cleave is made along the standard cleavage plane to intersect the first cleave, forming a thin wedge. This wedge is mounted on a grid, providing an electron transparent tip free of ion milling artifacts.


1999 ◽  
Vol 5 (S2) ◽  
pp. 916-917
Author(s):  
Salvatore Pannitteri

I present details of novel sample preparation techniques used for delineating two-dimensional dopant profiles in silicon devices. These techniques are based on selective chemical etch of doped silicon in a mixture of hydrofluoric and nitric acid, or simply in buffered HF. The altered topography of the etched surface is imaged by transmission electron microscopy (TEM). Two different strategies will be presented by focusing on their sensitive, resolution, and field of application.In the first case the silicon device is subjected to the conventional thinning procedure for TEM observations in cross-sectional configuration. The final thickness is obtained by Ar ion milling and it can vary between 50 to 500 nm. Sample is then immersed in a chemical solution containing HF (40%), HN03 (65%), and CH3COOH (95%) in the ratio 1:10:10. In presence of an intense illumination this mixture preferentially etches those device regions which are doped with boron, while in order to delineate n-type regions, the etching procedure must be performed in the dark.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Sign in / Sign up

Export Citation Format

Share Document