lithographic patterning
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 15)

H-INDEX

28
(FIVE YEARS 1)

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2743
Author(s):  
I-Hsiang Wang ◽  
Po-Yu Hong ◽  
Kang-Ping Peng ◽  
Horng-Chih Lin ◽  
Thomas George ◽  
...  

Semiconductor-based quantum registers require scalable quantum-dots (QDs) to be accurately located in close proximity to and independently addressable by external electrodes. Si-based QD qubits have been realized in various lithographically-defined Si/SiGe heterostructures and validated only for milli-Kelvin temperature operation. QD qubits have recently been explored in germanium (Ge) materials systems that are envisaged to operate at higher temperatures, relax lithographic-fabrication requirements, and scale up to large quantum systems. We report the unique scalability and tunability of Ge spherical-shaped QDs that are controllably located, closely coupled between each another, and self-aligned with control electrodes, using a coordinated combination of lithographic patterning and self-assembled growth. The core experimental design is based on the thermal oxidation of poly-SiGe spacer islands located at each sidewall corner or included-angle location of Si3N4/Si-ridges with specially designed fanout structures. Multiple Ge QDs with good tunability in QD sizes and self-aligned electrodes were controllably achieved. Spherical-shaped Ge QDs are closely coupled to each other via coupling barriers of Si3N4 spacer layers/c-Si that are electrically tunable via self-aligned poly-Si or polycide electrodes. Our ability to place size-tunable spherical Ge QDs at any desired location, therefore, offers a large parameter space within which to design novel quantum electronic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew T. Gole ◽  
Zhewen Yin ◽  
Michael Cai Wang ◽  
Wayne Lin ◽  
Ziran Zhou ◽  
...  

AbstractHierarchical heterostructures of two-dimensional (2D) nanomaterials are versatile platforms for nanoscale optoelectronics. Further coupling of these 2D materials with plasmonic nanostructures, especially in non-close-packed morphologies, imparts new metastructural properties such as increased photosensitivity as well as spectral selectivity and range. However, the integration of plasmonic nanoparticles with 2D materials has largely been limited to lithographic patterning and/or undefined deposition of metallic structures. Here we show that colloidally synthesized zero-dimensional (0D) gold nanoparticles of various sizes can be deterministically self-assembled in highly-ordered, anisotropic, non-close-packed, multi-scale morphologies with templates designed from instability-driven, deformed 2D nanomaterials. The anisotropic plasmonic coupling of the particle arrays exhibits emergent polarization-dependent absorbance in the visible to near-IR regions. Additionally, controllable metasurface arrays of nanoparticles by functionalization with varying polymer brushes modulate the plasmonic coupling between polarization dependent and independent assemblies. This self-assembly method shows potential for bottom-up nanomanufacturing of diverse optoelectronic components and can potentially be adapted to a wide array of nanoscale 0D, 1D, and 2D materials.


2021 ◽  
pp. 282-289
Author(s):  
Naihao Chiang ◽  
Leonardo Scarabelli ◽  
Gail A. Vinnacombe-Willson ◽  
Luis A. Pérez ◽  
Camilla Dore ◽  
...  

2021 ◽  
Vol 118 (4) ◽  
pp. e2014194118
Author(s):  
Ivan Batalov ◽  
Kelly R. Stevens ◽  
Cole A. DeForest

Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.


2021 ◽  
Vol 255 ◽  
pp. 01001
Author(s):  
Alejandro Sánchez-Postigo ◽  
Pablo Ginel-Moreno ◽  
Alejandro Ortega-Moñux ◽  
J. Gonzalo Wangüemert-Pérez ◽  
Robert Halir ◽  
...  

The use of subwavelength grating structures in silicon waveguides have fuelled the development of integrated optical components with superior performance. By a judicious lithographic patterning of the grating, the optical properties of the synthesized metamaterial can be accurately tailored. In this work, we review our latest advances in subwavelength-grating-engineered silicon and germanium planar devices.


2020 ◽  
Vol 31 (1) ◽  
pp. 2006283
Author(s):  
Di Xing ◽  
Cheng‐Chieh Lin ◽  
Ya‐Lun Ho ◽  
A. Syazwan A. Kamal ◽  
I‐Ta Wang ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 19 ◽  
Author(s):  
Hiroki Yamamoto ◽  
Guy Dawson ◽  
Takahiro Kozawa ◽  
Alex P. G. Robinson

Directed self-assembly (DSA) was investigated on self-assembled monolayers (SAMs) chemically modified by electron beam (EB) irradiation, which is composed of 6-(4-nitrophenoxy) hexane-1-thiol (NPHT). Irradiating a NPHT by EB could successfully induce the orientation and selective patterning of block copolymer domains. We clarified that spatially-selective lamellar orientations of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) could be achieved by a change of an underlying SAM. The change of an underlying SAM is composed of the transition of an NO2 group to an NH2 group, which is induced by EB. The modification in the polarity of different regions of the SAM with EB lithography controlled the lamellar orientation of PS-b-PMMA. The reduction of the NPHT SAM plays an important role in the orientation of block copolymer. This method might significantly simplify block copolymer DSA processes when it is compared to the conventional DSA process. By investigating the lamellae orientation with EB, it is clarified that only suitable annealing temperatures and irradiation doses lead to the vertical orientation. We also fabricated pre-patterned Si substrates by EB lithographic patterning and reactive ion etching (RIE). DSA onto such pre-patterned Si substrates was proven to be successful for subdivision of the lithographic patterns into line and space patterns.


Sign in / Sign up

Export Citation Format

Share Document