Preparation of heat-resistant alumina aerogels

1993 ◽  
Vol 8 (11) ◽  
pp. 2993-2999 ◽  
Author(s):  
Yasuyuki Mizushima ◽  
Makoto Hori

Alumina aerogels were prepared using supercritical drying methods, and their thermal properties were examined. The effects of several additives to the alumina aerogel and supercritical drying methods were examined in order to improve heat resistance. Silica, phosphoric oxide, barium oxide, lanthanum oxide, and SiC whisker were effective for maintaining a high specific surface area of the alumina aerogel at a temperature over 1200 °C. Silica was found to be the most effective among the additives. The addition of 10 mol % silica resulted in an alumina aerogel with the highest specific surface area, 114.3 m2/g at 1200 °C, and increased the transformation temperature to α alumina. Barium oxide and lanthanum oxide formed smaller crystals within the alumina, compared with those of alumina alone. SiC whisker caused many cracks in the alumina aerogel. When supercritically dried, the alumina aerogel was strengthened by treatment at higher temperature and pressure.

1995 ◽  
Vol 10 (6) ◽  
pp. 1424-1428 ◽  
Author(s):  
Yasuyuki Mizushima ◽  
Makoto Hori

Palladium-supported alumina aerogels were prepared by two different supercritical drying methods. In one method, an alumina wet gel was dried under supercritical conditions of ethanol in an autoclave. In the other, the aerogel was supercritically dried by extracting ethanol using carbon dioxide in an extractor. The Pd-supported alumina aerogel prepared in the autoclave exhibited a high specific surface area of 112.8 m2/g after firing at 1200 °C for 5 h, while the other had a specific surface area of only 5.2 m2/g due to α-alumina transformation. Their catalytic properties for methane combustion were measured. The Pd-supported alumina aerogel prepared in the autoclave combusts methane perfectly at 50–60 °C lower temperature than the other. Palladium particles on the alumina aerogel prepared in the autoclave contained palladium oxide, while those prepared in the CO2 extractor contained only palladium metal.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26271-26279 ◽  
Author(s):  
Jingfeng Yang ◽  
Qihua Wang ◽  
Tingmei Wang ◽  
Yongmin Liang

In this study, we developed a new and rapid preparation method of alumina aerogels based on the sol–gel method and supercritical drying technique and prepared alumina aerogels with high specific surface area.


2012 ◽  
Vol 519 ◽  
pp. 83-86 ◽  
Author(s):  
Guang Wu Liu ◽  
Xing Yuan Ni ◽  
Bin Zhou ◽  
Qiu Jie Yu

This paper deals with the synthesis of ultralow density silica aerogels using tetramethyl orthosilicate (TMOS) as the precursor via sol-gel process followed by supercritical drying using acetonitrile solvent extraction. Ultralow density silica aerogels with 6 mg/cc of density was made for the molar ratio by this method. The microstructure and morphology of the ultralow density silica aerogels was characterized by the specific surface area, SBET, SEM, and the pore size distribution techniques. The results show that the ultralow density silica aerogel has the high specific surface area of 812m2/g. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.024 to 0.043W/ (m K) as temperature increased to 400°C, revealed an excellent heat insulation effect during thermal process.


2007 ◽  
Vol 336-338 ◽  
pp. 2286-2289
Author(s):  
Fei He ◽  
Xiao Dong He ◽  
Yao Li

Low-density xSiO2-(1-x)Al2O3 xerogels with x=0.9, 0.8, 0.7, 0.6 (mole fractions) were prepared by sol-gel and non-supercritical drying. Silica alkogels, which were the framework of binary composite materials, formed from tetraethyl orthosilicate (TEOS) by hydrolytic condensation with a molar ratio of TEOS: H2O: alcohol: hydrochloric acid: ammonia =1: 4: 10: 7.5×10-4: 0.0375. Aluminum hydroxide derived from Al(NO3)3·9H2O and NH4OH acting in the alcohol solution under the condition of catalyst. After filtrating and washing, the precipitation was mixed into silica sols to form SiO2-Al2O3 mixed oxide gels with different silicon and aluminum molar ratio. The structural change and crystallization of the binary xerogels were investigated after heat treatment at 600 for 2 h by the means of X-ray diffraction. Nitrogen adsorption experiment was performed to estimate specific surface area, porous volume and pore size distribution. The structural change of xerogels was observed by FT-IR spectroscopy. The resulting mixed xerogels possess of mesoporous structure which is characteristic of cylindrical pores, high specific surface area of 596-863 m2/g and a relatively narrow pore distribution of 2.8-30 nm. Al2O3 is introduced into the SiO2 phase and some of Al-O-Si bonds form.


1994 ◽  
Vol 9 (9) ◽  
pp. 2272-2276 ◽  
Author(s):  
Yasuyuki Mizushima ◽  
Makoto Hori

Barium hexa-aluminate (BaO · 6Al2O3) aerogels were prepared using a supercritical drying method and their properties examined. A barium hexa-aluminate aerogel prepared from a double alkoxide of barium and aluminum showed a high specific surface area of 421 m2/g. Monolithic barium hexa-aluminate formed. No BaO · Al2O3 or alumina was observed, as is often the case in powder processing. The specific surface area of the monolithic barium hexa-aluminate fired at 1400 °C for 2 h was 12 m2/g, while that of the barium hexa-aluminate xerogel was only 0.8 m2/g. A barium hexa-aluminate aerogel was also prepared using barium by using a chelating agent. This aerogel showed a specific surface area of 454 m2/g as-dried. In the case of the chelating agent, BaO · Al2O3 was also detected along with barium hexa-aluminate after firing.


Gels ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 12 ◽  
Author(s):  
Victor Baudron ◽  
Pavel Gurikov ◽  
Irina Smirnova ◽  
Steve Whitehouse

The production of porous materials based on starch has been explored with supercritical drying—yielding aerogel—and freeze-drying. The two drying procedures were applied on the same gelling solution of amylomaize starch pasted at 140 °C and for two concentrations (5 and 10 wt.%). After gelation and retrogradation, water from the samples to be supercritically dried was exchanged to ethanol. The resulting starch aerogel presented high specific surface area (197 m2/g). Freeze-drying was assessed by investigating the effect of the gelation, retrogradation, freezing temperature, and sublimation pressure. The resulting starch materials were macroporous, with limited specific surface area and limited mechanical integrity. Cohesive open cell foam with pore size of ~20 µm was produced by quenching the hot starch melt in liquid nitrogen. The highest specific surface area obtained with freeze-drying was 7.7 m2/g for the hot starch melt frozen at −20 °C.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tingting Niu ◽  
Bin Zhou ◽  
Zehui Zhang ◽  
Jianming Yang ◽  
Xiujie Ji ◽  
...  

Monolithic TiO2 aerogels without severe shrink were obtained by the sol-gel method with the addition of the surfactant cetyltrimethylammonium bromide (CTAB) to control the hydrolysis and polycondensation process and acetonitrile solvent as the solvent to improve the crystallinity. After CO2 supercritical drying, the shrinkage ratio of monolithic TiO2 aerogels modified by CTAB decreased by up to ∼26.9%, compared with the pure TiO2 aerogel. Their apparent densities were all lower than 300 g/cm3. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR) and BET Specific Surface Area Analysis were used to analyze the as-synthesized samples. The results revealed that all the samples were anatase-TiO2 phase with nanoporous network structures. The specific surface areas reached 250.2 m2/g confirmed by the BET (Brunaur–Emmett–Teller method) analysis. However, TiO2 aerogels without the addition of CTAB showed evident agglomeration and collapse of the network in comparison with CTAB-added samples. To further study the structure-property relationship, the photocatalysis performance of as-synthesized and 300°C-calcined aerogels was carried out contrastively. Interestingly, the influences of the CTAB adding amount of as-synthesized and calcined TiO2 aerogels are negative and positive, respectively, which is probably due to the synergistic effect of CTAB hindrance and grain refinement. Potentially, This kind of TiO2 aerogels assisted by CATB with low density, small shrinkage, improved formability, high specific surface area and fine crystalline grain may be applied in various applications, such as electrochemistry, photocatalysis, etc.


2010 ◽  
Vol 148-149 ◽  
pp. 920-923
Author(s):  
Yue Qing Zhao ◽  
Ying Hua Liang ◽  
Feng Feng Li ◽  
Hong Ping Chen ◽  
Xin Hua Liu ◽  
...  

CuO-CoO-MnO/SiO2 nanocomposite aerogels were prepared by using tetraethyl orthosilicate (TEOS) as Si source, and aqueous solution of Cu, Co and Mn acetates as transition metal sources via sol-gel process and supercritical drying (SCD) technique. The effect of synthesis conditions on gelation was investigated. The composition of the nanocomposite aerogels was characterized by electron dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The specific surface area of the nanocomposite aerogels was determined by the Brunauer-Emmett-Teller (BET) method. The results show that the range of optimal temperature for gelation is 30-45 °C, and the pH is 3.0-4.5. CuO-CoO-MnO/SiO2 nanocomposite aerogels are porous with a specific surface area of 384.9-700.6 m2/g. Compared to CO2 SCD, ethanol SCD is even favorable to the formation of aerogel with high specific surface area. The transition metals content in the nanocomposite aerogels can be controlled to be 0.71-13.77 at.%.


Sign in / Sign up

Export Citation Format

Share Document