Photo-induced magnetic behavior in the amorphous spin-glass material Co3(SbTe3)2

1994 ◽  
Vol 9 (4) ◽  
pp. 909-914 ◽  
Author(s):  
Biao Wu ◽  
Lianwei Ren ◽  
Charles J. O'Connor ◽  
Jinke Tang ◽  
Jin-Seung Jung ◽  
...  

A new ternary material Co3(SbTe3)2 was prepared by using a rapid precipitation metathesis reaction between the Zintl material K3SbTe3 and CoCl2 in aqueous solution. The dc specific resistivity of this material is in the region for metallic conductors (p = 2.75 × 10-3 Ω-cm). The dc magnetic susceptibility of Co3(SbTe3)2 is reported over a 2.2 K-300 K temperature region, and the material is characterized as a spin glass with a freezing temperature of about 5 K. Magnetization data are also reported as both thermal remanent magnetization and isothermal remanent magnetization as a function of magnetizing field and temperature. When cooled well below the glass freezing temperature, the frozen spin glass has been observed to exhibit photomagnetic effects consistent with a disruption of the spin-glass state caused by uv-radiation.

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 877
Author(s):  
Danyi Zhou ◽  
Guanghai Shi ◽  
Suzhen Liu ◽  
Bailing Wu

Iron oxides/hydroxides are important magnetic minerals to provide information about changes in the forming environment. However, the magnetic behavior in agate has been rarely investigated. In this study, the magnetic behavior of the Xuanhua-type agate with intense yellow to red colors from the Xuanhua District (China) was investigated by temperature dependence of magnetic susceptibility, hysteresis loop, isothermal remanent magnetization and the analysis of remanent coercivity components from the gradient acquisition plot. Yellow goethite and red hematite can be quantitatively identified by XRD and Raman spectroscopy due to their relatively higher content. Results showed that the red, yellow and orange Xuanhua-type agate had different magnetic behavior, and magnetite existed in the yellow and orange ones. Fluid inclusions in such agate had the homogenization temperature of ~168 °C to 264 °C. All results suggested that the dehydration of goethite to form hematite was the main reason for the high remnant coercivity (above 1000 mT) of hematite in the red agate. The co-existence of magnetite and goethite in the yellow and orange agate reflects the transformation from Fe2+ to Fe3+, indicating the change in the redox property of the environment. Unique patterns mainly formed by hematite and goethite make it a popular gem-material with high research value.


1994 ◽  
Vol 130 (1-3) ◽  
pp. 293-296 ◽  
Author(s):  
A.I. Tovstolytkin ◽  
N.A. Belous ◽  
I.V. Lezhnenko

2014 ◽  
Vol 215 ◽  
pp. 470-473 ◽  
Author(s):  
Tamara V. Drokina ◽  
German A. Petrakovskii ◽  
Dmitrii A. Velikanov ◽  
Maksim S. Molokeev

In this paper we are reported about a peculiarity of the crystal structure and the magnetic state of TmFeTi2O7. The compound TmFeTi2O7 has been synthesizedusing the solid-phase reaction method. Using X-ray diffraction method the disorder in the distribution of the iron ions over five nonequivalent crystal sites was observed, also the populations of the iron atoms positions were determined. We show that below Tf = 6 K the magnetization of TmFeTi2O7 depends on the magnetic history of the sample. There are indications for spin glass state. This results allow us to assume the state of spin glass is realized below freezing temperature Tf = 6 K in TmFeTi2O7.


Author(s):  
J. Rajchenbach ◽  
J. Ferré ◽  
H. Maletta

2020 ◽  
Author(s):  
Ryan Murphy ◽  
Lucy Darago ◽  
Michael Ziebel ◽  
Elizabeth A. Peterson ◽  
Edmond W. Zaia ◽  
...  

<p><b>The discovery of conductive and magnetic two-dimensional (2D) materials is critical for the development of next generation spintronics devices. Coordination chemistry in particular represents a highly versatile, though underutilized, route toward the synthesis of such materials with designer lattices. Here, we report the synthesis of a conductive, layered 2D metal–organic kagome lattice, Mn<sub>3</sub>(C<sub>6</sub>S<sub>6</sub>), using mild solution-phase chemistry. Strong geometric<i> </i>spin frustration in this system mediates spin freezing at low temperatures, which results in glassy magnetic behavior consistent with a geometrically frustrated (topological) spin glass. Notably, the material exhibits a large exchange bias of 1625 Oe, providing the first example of exchange bias in a coordination solid or a topological spin glass. More generally, these results demonstrate the potential utility of geometrically frustrated lattices in the design of new nanoscale spintronic materials.</b></p>


1982 ◽  
Vol 19 (6) ◽  
pp. 1196-1217 ◽  
Author(s):  
Daniel Biquand

We have investigated the properties of natural magnetization of a lacustrine interglacial Riss–Würm deposit near Grenoble (France). Made up of accumulated argillite 250 m thick, this deposit comprises annual varves with an average thickness of 0.5 cm.The magnetic viscosity of this sediment is not very high, and we have demonstrated that the characteristic magnetization, measured after a moderate thermal treatment (between 160 and 220 °C) followed by alternating field demagnetization with maximum intensity at 200 Oe (15.9 × 103 A/m), is possibly a detrital magnetization carried by the magnetite (thermomagnetic and strong continuous field studies).On a local scale (area of about 100 m2), the direction of this magnetization remains very homogeneous within each horizon; sampling restricted to about 10 sites 1 m apart indicates for each level a mean direction of magnetization with a high accuracy: α95 = 1–2°, k = 500–2500. The aveage direction calculated by this method for different levels indicates significant stratigraphic variations (attaining an inclination of 20° and a declination of 50°), which are reached rapidly (from 1 to few degrees per year). Such variations cannot be reasonably attributed to changes in the directions of the Earth's magnetic field.A study of the acquired anisotropy of the thermal remanent magnetization indicates a magnetic anisotropy that is related to the lithological structure of the sediment and shows a strong intensity: the maximum divergence between the field direction and the acquired thermal remanent magnetization direction in this field varies, with individual samples, between 9 and 50°. The study of the properties of this anistotropy demonstrates the "infidelity" of the detrital magnetization: for one of the small vertical sequences studied for anisotropy the characteristic magnetization of a specified level has a direction nearer the axial direction of easy magnetization when the anisotropic intensity is large. This infidelity may be caused by different factors influencing the deposition of the sediment, particularly the variable directions of water flows determining the particle orientation. [Journal Translation]


2020 ◽  
Author(s):  
Adika Bagaskara ◽  
Christopher Salim ◽  
Muhammad Archie Antareza ◽  
Kevin Dwimanggala Tjiongnotoputera ◽  
Mariyanto Mariyanto

1971 ◽  
Vol 8 (3) ◽  
pp. 361-370 ◽  
Author(s):  
G. S. Murthy ◽  
M. E. Evans ◽  
D. I. Gough

The Michikamau anorthosite possesses very stable natural remanent magnetization, some of which resists alternating fields up to 1800 Oe. The rock contains two types of opaque grains, fine opaque needles of order 10 × 0.5 μ in the plagioclase felspar, and large equidimensional magnetite particles. Ore microscope studies suggest, but do not establish, that the needles are composed of magnetite. Saturation isothermal remanence and thermal demagnetization studies indicate magnetite as the carrier of remanent magnetization. In order to distinguish the effects of the large grains from those of the needles, mineral separation was used to show that an artificial specimen of essentially pure plagioclase had very similar isothermal remanent magnetization properties to the whole rock. Both indicated magnetite as the magnetic mineral. Thermoremanent properties of the separated mineral fractions indicated magnetite as the dominant magnetic constituent but showed some evidence of laboratory-produced hematite. Theoretical models of grains elongated along [111] and [110] axes are used to show that magnetite needles can exist in stable single-domain configuration in the size and shape ranges of the needles observed in the Michikamau anorthosite. There is thus considerable experimental and theoretical evidence for the conclusion that the stable remanent magnetization of the Michikamau anorthosite is carried by fine single–domain needles of magnetite in the plagioclase felspar.


1998 ◽  
Vol 24 (8) ◽  
pp. 565-567 ◽  
Author(s):  
Yu. P. Gaidukov ◽  
V. N. Nikiforov ◽  
Yu. A. Koksharov ◽  
R. Szymczak ◽  
H. Szymczak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document