Micromagnetic calculations of the effect of magnetostatic interactions on isothermal remanent magnetization curves: implications for magnetic mineral identification

Author(s):  
Fan Bai ◽  
Liao Chang ◽  
Thomas A. Berndt ◽  
Zhaowen Pei
2021 ◽  
Author(s):  
Cristian George Panaiotu ◽  
Cristian Necula ◽  
Relu D. Roban ◽  
Alexandru Petculescu ◽  
Ionut-Cornel Mirea ◽  
...  

<p>Cyclical changes in the magnetic mineral assemblages have been observed in numerous sedimentary records confirming the relationship between rock magnetism and past global change. Several studies have shown that the magnetic susceptibility data of cave sediments reflect both long- and short-term climatic oscillations. These magnetic susceptibility variations are attributed to changes in climate-controlled pedogenesis which influence the production of low coercivity magnetic mineral phases, magnetite, and maghemite outside the cave. These soils with climate-dependent magnetic properties are then washed, blown, or tracked into the cave where they accumulate, creating the changes observed in rock magnetic data. We present a rockmagnetism study of the sediments from the Urșilor cave and the soils above the cave. Our focus is the detailed characterization of the ferromagnetic mineralogy preserved in the cave sediments and its links with potential soil sources. In the cave, we sampled four sections (2-3 m high) consisting mainly of silts and clays, with some sand layers. The age of the sediments is older than 40 ka. At the surface, we sampled various types of soils from 9 sites. For all samples, we measured: variation of magnetic susceptibility with frequency (976 and 15616 Hz), the anisotropy of magnetic susceptibility, isothermal remanent magnetization, and anhysteretic remanent magnetization. Because soils are characterized by the presence of superparamagnetic magnetite produced by pedogenesis which can be detected by the frequency dependence of magnetic susceptibility, we also measured the frequency dependence of soils and selected cave sediment samples at 13 frequencies (between 128 and 512000 Hz). Multi-frequencies measurements of the magnetic susceptibility of recent soils show that all the sampled soils have a strong frequency dependence indicating the presence of superparamagnetic particles produced by pedogenesis. Most of the sediment samples have an important frequency dependence similar to the one observed in the recent soils. As a preliminary conclusion, we can state that most of the fine cave sediments contain superparamagnetic particles, which can be probably attributed to soils transported into the cave by erosion. These results suggest that during the deposition of high magnetic susceptibility sediments it was a climate favorable for intense pedogenesis. The interpretation of the intervals with lower values of magnetic susceptibility is still under investigation to decide if represents a climatic signal or a change in the dynamics of sediment transport. <strong>Acknowledgment:</strong> The research leading to these results has received funding from the EEA Grants 2014-2021, under Project contract no. EEA-RO-NO-2018-0126.</p>


2020 ◽  
Author(s):  
Adika Bagaskara ◽  
Christopher Salim ◽  
Muhammad Archie Antareza ◽  
Kevin Dwimanggala Tjiongnotoputera ◽  
Mariyanto Mariyanto

1971 ◽  
Vol 8 (3) ◽  
pp. 361-370 ◽  
Author(s):  
G. S. Murthy ◽  
M. E. Evans ◽  
D. I. Gough

The Michikamau anorthosite possesses very stable natural remanent magnetization, some of which resists alternating fields up to 1800 Oe. The rock contains two types of opaque grains, fine opaque needles of order 10 × 0.5 μ in the plagioclase felspar, and large equidimensional magnetite particles. Ore microscope studies suggest, but do not establish, that the needles are composed of magnetite. Saturation isothermal remanence and thermal demagnetization studies indicate magnetite as the carrier of remanent magnetization. In order to distinguish the effects of the large grains from those of the needles, mineral separation was used to show that an artificial specimen of essentially pure plagioclase had very similar isothermal remanent magnetization properties to the whole rock. Both indicated magnetite as the magnetic mineral. Thermoremanent properties of the separated mineral fractions indicated magnetite as the dominant magnetic constituent but showed some evidence of laboratory-produced hematite. Theoretical models of grains elongated along [111] and [110] axes are used to show that magnetite needles can exist in stable single-domain configuration in the size and shape ranges of the needles observed in the Michikamau anorthosite. There is thus considerable experimental and theoretical evidence for the conclusion that the stable remanent magnetization of the Michikamau anorthosite is carried by fine single–domain needles of magnetite in the plagioclase felspar.


1994 ◽  
Vol 9 (4) ◽  
pp. 909-914 ◽  
Author(s):  
Biao Wu ◽  
Lianwei Ren ◽  
Charles J. O'Connor ◽  
Jinke Tang ◽  
Jin-Seung Jung ◽  
...  

A new ternary material Co3(SbTe3)2 was prepared by using a rapid precipitation metathesis reaction between the Zintl material K3SbTe3 and CoCl2 in aqueous solution. The dc specific resistivity of this material is in the region for metallic conductors (p = 2.75 × 10-3 Ω-cm). The dc magnetic susceptibility of Co3(SbTe3)2 is reported over a 2.2 K-300 K temperature region, and the material is characterized as a spin glass with a freezing temperature of about 5 K. Magnetization data are also reported as both thermal remanent magnetization and isothermal remanent magnetization as a function of magnetizing field and temperature. When cooled well below the glass freezing temperature, the frozen spin glass has been observed to exhibit photomagnetic effects consistent with a disruption of the spin-glass state caused by uv-radiation.


1989 ◽  
Vol 26 (11) ◽  
pp. 2401-2405 ◽  
Author(s):  
D. T. A. Symons

The 2.3 km diameter Firesand River complex intrudes Archean volcanics and granites of the Wawa Subprovince in the Superior Province about 8 km east of Wawa, Ontario. It has given differing Middle Proterozoic K–Ar biotite ages of 1018 ± 50 and 1097 Ma. Alternating-field and thermal step demagnetization of specimens from three calcific carbonatite sites, five ferruginous dolomitic carbonatite sites, and one lamprophyre dike site isolated a stable mean direction of 290°, 33 °(α95 = 12°). Isothermal remanent magnetization tests indicate the remanence is held by single-to pseudosingle-domain magnetite and hematite in the carbonatite. The dike remanence is Keweenawan in age, thereby confirming its genetic relationship to the complex, and it gives a positive partial contact test with its host rock, indicating no postintrusive remagnetization. The blocking-temperature spectra indicate that postintrusive uplift has not exceeded about 4 km. The pole position for the complex is 183°E, 27°N (dp = 8°, dm = 13°). This pole lies directly on the well-dated Keweenawan apparent polar wander path, giving an age of 1090 ± 10 Ma, in agreement with the older K–Ar age. It also confirms geologic and aeromagnetic evidence that the complex has not been tectonically tilted since emplacement.


1973 ◽  
Vol 10 (4) ◽  
pp. 576-581 ◽  
Author(s):  
W. F. Fahrig ◽  
E. J. Schwarz

Paleomagnetic data were obtained from eleven additional sites on Baffin diabase dike intrusions (part of the Franklin diabases). The rock at four sites was found to be normally magnetized, at six sites reversely magnetized, and at one site the rock contained no primary remanent magnetization that could be isolated by alternating field (a.f.) demagnetization. Baffin Island is divisible into several zones within which the Baffin dikes are either normally or reversely magnetized. This may indicate that more than one reversal is represented. The ten sites yield a pole at 168 °E, 6 °N, α95 = 5°, and when combined with previously published data (total 46 sites) yield a revised Franklin diabase pole at 166 °E, 6 °N, α95 = 4°. At least 10 of the 11 new sites apparently lie outside the zone from within which Baffin dikes have yielded anomalous remanent magnetization directions. Thermomagnetic curves for representative material of the Baffin dikes indicate that the magnetic mineral of these rocks is almost pure magnetite. It does not explain the anomalous magnetization of the Franklin dikes that occur along the northeast coastal area.


The natural remanent magnetization of rock fragments L2015,3,1 and L2015,3,11 was found to be < 3.5 x 10 -7 and < 40 x 10 -6 G cm 3 g -1 respectively. The former sample, from isothermal remanent magnetization (i.r.m.) measurements, contained very little iron, while the latter sample had a much higher iron content and exhibited i.r.m. characteristics similar to breccia samples from Apollo missions. Susceptibility and i.r.m. measurements have shown that Luna 16 fines contain about four times as much iron as Luna 20 samples and that the light fractions from the density separations contain about twice as much iron as the heavy fraction. Like the Apollo fines, the magnetic behaviour of Luna 16 and 20 fines is dominated by small iron particles, most of which are superparamagnetic and of grain size less than about 13 nm.


Geophysics ◽  
1990 ◽  
Vol 55 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Michael J. Pinto ◽  
Michael McWilliams

The recovery of core samples is important in petroleum exploration, mineral exploration, and scientific drilling projects; and often complete orientation of the samples (azimuth and plunge) is desirable. Recovered cores are usually not azimuthally oriented because of the costs associated with deployment and operation of downhole orientation tools. Inexpensive paleomagnetic orientation methods have been used with considerable success in the borehole environment (Van der Voo and Watts, 1978; Kodama, 1984; Bleakly et al., 1985a, b; Evans and Mailol, 1986; Layer et al., 1988; McWilliams and Pinto, 1988). In some cases, the technique has been hampered by secondary magnetizations associated with the drillstring and/or coring tool, magnetizations which have partially or completely overprinted the primary and secondary magnetizations used for orientation.


Sign in / Sign up

Export Citation Format

Share Document