Oxygen incorporation in aluminum nitride via extended defects: Part II. Structure of curved inversion domain boundaries and defect formation

1995 ◽  
Vol 10 (5) ◽  
pp. 1287-1300 ◽  
Author(s):  
Alistair D. Westwood ◽  
Robert A. Youngman ◽  
Martha R. McCartney ◽  
Alastair N. Cormack ◽  
Michael R. Notis

Three distinct morphologies of curved (curved, facetted, and corrugated) inversion domain boundaries (IDB's), observed in aluminum nitride, have been investigated using conventional transmission electron microscopy, convergent beam electron diffraction, high-resolution transmission electron microscopy, analytical electron microscopy, and atomistic computer simulations. The interfacial structure and chemistry of the curved and facetted defects have been studied, and based upon the experimental evidence, a single model has been proposed for the curved IDB which is consistent with all three observed morphologies. The interface model comprises a continuous nitrogen sublattice, with the aluminum sublattice being displaced across a {1011} plane, and having a displacement vector R = 0.23〈0001〉. This displacement translates the aluminum sublattice from upwardly pointing to downwardly pointing tetrahedral sites, or vice versa, in the wurtzite structure. The measured value of the displacement vector is between 0.05〈0001〉 and 0.43〈0001〉; the variation is believed to be due to local changes in chemistry. This is supported by atomistic calculations which indicate that the interface is most stable when both aluminum vacancies and oxygen ions are present at the interface, and that the interface energy is independent of displacement vector in the range of 0.05〈0001〉 to 0.35〈0001〉. The curved IDB's form as a result of nonstoichiometry within the crystal. The choice of curved IDB morphology is believed to be controlled by local changes in chemistry, nonstoichiometry at the interface, and proximity to other planar IDB's (the last reason is explained in Part III). A number of possible formation mechanisms are discussed for both planar and curved IDB's. The Burgers vector for the dislocation present at the intersection of the planar and curved IDB's was determined to be b = 1/3〈1010〉 + t〈0001〉, where tmeas = 0.157 and tcalc = 0.164.

1995 ◽  
Vol 10 (5) ◽  
pp. 1270-1286 ◽  
Author(s):  
Alistair D. Westwood ◽  
Robert A. Youngman ◽  
Martha R. McCartney ◽  
Alastair N. Cormack ◽  
Michael R. Notis

The model proposed by Harris et al. [J. Mater. Res. 5, 1763–1773 (1990)], describing planar inversion domain boundaries in aluminum nitride, consists of a basal plane of aluminum atoms octahedrally coordinated with respect to oxygen, and with a translation of R = 1/3〈1011〉. This thin sandwich is inserted onto the basal plane of the wurtzite structure of aluminum nitride. This model does not take into consideration any interfacial relaxation phenomena, and is arguably electrically unstable. Therefore, this paper presents a refinement of the model of Harris et al., by incorporating the structural relaxations arising from modifications in local chemistry. The interfacial structure was investigated through the use of conventional transmission electron microscopy, convergent electron diffraction, high resolution transmission electron microscopy, analytical electron microscopy, and atomistic computer simulations. The refined planar inversion domain boundary model is closely based on the original model of Harris et al.; however, the local chemistry is changed, with every fourth oxygen being replaced by a nitrogen. Atomistic computer simulation of these defects, using a classical Born model of ionic solids, verified the stability of these defects as arising from the adjustment in the local chemistry. The resulting structural relaxations take the form of a 0.3 mrad twist parallel to the interface, a contraction of the basal planes adjacent to the planar inversion domain boundary, and an expansion of the c-axis component of the displacement vector; the new displacement vector across the interface is R = 1.3〈1010〉 + ∊〈0001〉, where ∊meas = 0.387 and ∊calc = 0.394.


1989 ◽  
Vol 167 ◽  
Author(s):  
Alistair D. Westwood ◽  
Michael R. Notis

AbstractThe microstructure and microchemistry of planar and curved defects in Aluminum Nitride (AIN) has been investigated using Conventional Transmission Electron Microscopy (CTEM), Convergent Beam Electron Diffraction (CBED), and Analytical Electron Microscopy (AEM) techniques. Both defect morphologies were identified as Inversion Domain Boundaries (IDB). Microchemical analysis revealed oxygen segregation to the planar faults; when present on the curved defects, oxygen was at a lower concentration than in the planar defect case. Annealing experiments on defect containing AIN support our microchemical analysis of oxygen segregation. A proposed model for the formation of these two types of boundaries is presented.


2009 ◽  
Vol 615-617 ◽  
pp. 331-334 ◽  
Author(s):  
Alkyoni Mantzari ◽  
Christos B. Lioutas ◽  
Efstathios K. Polychroniadis

The aim of the present work is to study the evolution and the annihilation of inversion domain boundaries in 3C-SiC during growth. For this investigation conventional and high resolution transmission electron microscopy were employed. It is shown that the physical mechanism which results in the annihilation of inversion domain boundaries in 3C-SiC starting from the 3C-SiC/Si interface is the change of the crystallographic planes in which inversion domain boundaries propagate into the {111} ones. In all cases modeling and simulation analysis by EMS software [1] are in agreement with the experimental results.


2001 ◽  
Vol 16 (10) ◽  
pp. 2959-2965 ◽  
Author(s):  
Q. Chen ◽  
J. Tao ◽  
J. J. Zuo ◽  
J. J. H. Spence

Microstructures of La1-xCaxMnO3 compounds (x = ⅓ and 0.5) prepared with and without intermediate grinding were studied using transmission electron microscopy. A high density of antiphase boundaries (APBs) with displacement vector 1/2 〈111〉, indexed in orthorhombic unit cell, has been observed in bulk samples with no or minimum intermediate grinding. The nature of this APB is analyzed and found to bedue to the symmetry breaking introduced by the tilting of MnO6 octahedra relative to the ideal perovskite structure. Samples prepared using two intermediate grinds do not show these defects indicating that the microstructure can be controlled through synthesis routes. The effect of domain boundaries on the colossal magnetoresistance effect is discussed.


2001 ◽  
Vol 16 (1) ◽  
pp. 261-267 ◽  
Author(s):  
H. Zhou ◽  
A. Rühm ◽  
N. Y. Jin-Phillipp ◽  
F. Phillipp ◽  
M. Gross ◽  
...  

GaN grown on sapphire (α–Al2O3) was characterized by laser-induced molecular beam epitaxy. Threading dislocations with Burgers vectors of 1/3〈1120〉, 1/3〈1123〉 and [0001] were observed with a predominance of the first type. Additionally, inversion domains with Ga-polarity existed with respect to the adjacent matrix, which was of N-polarity. The dislocation densities and coherence lengths were deduced from x-ray diffraction and found to be in accordance with those measured by transmission electron microscopy. Both displacement fringe contrast analysis and high-resolution transmission electron microscopy results indicated that the inversion domain boundaries had Ga–N bonds between domains and the adjacent matrix.


1995 ◽  
Vol 10 (10) ◽  
pp. 2573-2585 ◽  
Author(s):  
Alistair D. Westwoord ◽  
Robert A. Youngman ◽  
Martha R. McCartney ◽  
Alasiair N. Cormack ◽  
Michael R. Notis

This paper extends the concepts that were developed to explain the structural rearrangement of the wurtzite AlN lattice due to incorporation of small amounts of oxygen, and to directly use them to assist in understanding the polytypoid structures. Conventional and high-resolution transmission electron microscopy, specific electron diffraction experiments, and atomistic computer simulations have been used to investigate the structural nature of the polytypoids. The experimental observations provide compelling evidence that polytypoid structures are not arrays of stacking faults, but are rather arrays of inversion domain boundaries (IDB's). A new model for the polytypoid structure is proposed with the basic repeat structural unit consisting of a planar IDB-P and a corrugated IDB. This model shares common structural elements with the model proposed by Thompson, even though in his model the polytypoids were described as consisting of stacking faults. Small additions (≃ 1000 ppm) of silicon were observed to have a dramatic effect on the polytypoid structure. First, it appears that the addition of Si causes the creation of a new variant of the planar IDB (termed IDB-P'), different from the IDB-P defect observed in the AlN-Al2O3 polytypoids; second, the addition of Si influences the structure of the corrugated IDB, such that it appears to become planar.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


2000 ◽  
Vol 639 ◽  
Author(s):  
Philomela Komninou ◽  
Joseph Kioseoglou ◽  
Eirini Sarigiannidou ◽  
George P. Dimitrakopulos ◽  
Thomas Kehagias ◽  
...  

ABSTRACTThe interaction of growth intrinsic stacking faults with inversion domain boundaries in GaN epitaxial layers is studied by high resolution electron microscopy. It is observed that stacking faults may mediate a structural transformation of inversion domain boundaries, from the low energy types, known as IDB boundaries, to the high energy ones, known as Holt-type boundaries. Such interactions may be attributed to the different growth rates of adjacent domains of inverse polarity.


Sign in / Sign up

Export Citation Format

Share Document