Variant structure in metal-organic-chemical-vapor-deposition-derived SnO2 thin films on sapphire (0001)

1995 ◽  
Vol 10 (6) ◽  
pp. 1516-1522 ◽  
Author(s):  
Donhang Liu ◽  
Q. Wang ◽  
H.L.M. Chang ◽  
Haydn Chen

Tin oxide (SnO2) thin films were deposited on sapphire (0001) substrate by metal-organic chemical vapor deposition (MOCVD) at temperatures of 600 and 700 °C. The microstructure of the deposited films was characterized by x-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). At the growth conditions studied, films were single-phase rutile and epitaxial, but showed variant structures. Three distinct in-plane epitaxial relationships were observed between the films and the substrate. A crystallographic model is proposed to explain the film morphology. This model can successfully predict the ratio of the width to the length of an averaged grain size based upon the lattice mismatch of the film-substrate interface.

1997 ◽  
Vol 12 (5) ◽  
pp. 1214-1236 ◽  
Author(s):  
Bruce J. Hinds ◽  
Richard J. McNeely ◽  
Daniel B. Studebaker ◽  
Tobin J. Marks ◽  
Timothy P. Hogan ◽  
...  

Epitaxial Tl2Ba2CaCu2O8 thin films with excellent electrical transport characteristics are grown in a two-step process involving metal-organic chemical vapor deposition (MOCVD) of a BaCaCuO(F) thin film followed by a postanneal in the presence of Tl2O vapor. Vapor pressure characteristics of the recently developed liquid metal-organic precursors Ba(hfa)2 • mep (hfa = hexafluoroacetylacetonate, mep = methylethylpentaglyme), Ca(hfa)2 • tet (tet = tetraglyme), and the solid precursor Cu(dpm)2 (dpm = dipivaloylmethanate) are characterized by low pressure thermogravimetric analysis. Under typical film growth conditions, transport is shown to be diffusion limited. The transport rate of Ba(hfa)2 • mep is demonstrated to be stable for over 85 h at typical MOCVD temperatures (120 °C). In contrast, the vapor pressure stability of the commonly used Ba precursor, Ba(dpm)2, deteriorates rapidly at typical growth temperatures, and the decrease in vapor pressure is approximately exponential with a half-life of ∼9.4 h. These precursors are employed in a low pressure (5 Torr) horizontal, hot-wall, film growth reactor for growth of BaCaCuO(F) thin films on (110) LaAlO3 substrates. From the dependence of film deposition rate on substrate temperature and precursor partial pressure, the kinetics of deposition are shown to be mass-transport limited over the temperature range 350–650 °C at a 20 nm/min deposition rate. A ligand exchange process which yields volatile Cu(hfa)2 and Cu(hfa) (dpm) is also observed under film growth conditions. The MOCVD-derived BaCaCuO(F) films are postannealed in the presence of bulk Tl2Ba2CaCu2O8 at temperatures of 720–890 °C in flowing atmospheres ranging from 0–100% O2. The resulting Tl2Ba2CaCu2O8 films are shown to be epitaxial by x-ray diffraction and transmission electron microscopic (TEM) analysis with the c-axis normal to the substrate surface, with in-plane alignment, and with abrupt film-substrate interfaces. The best films exhibit a Tc = 105 K, transport-measured Jc= 1.2 × 105 A/cm2 at 77 K, and surface resistances as low as 0.4 mΩ (40 K, 10 GHz).


2007 ◽  
Vol 515 (5) ◽  
pp. 2921-2925 ◽  
Author(s):  
Chunyu Wang ◽  
Volker Cimalla ◽  
Genady Cherkashinin ◽  
Henry Romanus ◽  
Majdeddin Ali ◽  
...  

2003 ◽  
Vol 42 (Part 1, No. 5A) ◽  
pp. 2839-2842 ◽  
Author(s):  
Jeong Hoon Park ◽  
Kug Sun Hong ◽  
Woon Jo Cho ◽  
Jang-Hoon Chung

1994 ◽  
Vol 9 (7) ◽  
pp. 1721-1727 ◽  
Author(s):  
Jie Si ◽  
Seshu B. Desu ◽  
Ching-Yi Tsai

Synthesis of zirconium tetramethylheptanedione [Zr(thd)4] was optimized. Purity of Zr(thd)4 was confirmed by melting point determination, carbon, and hydrogen elemental analysis and proton nuclear magnetic resonance spectrometer (NMR). By using Zr(thd)4, excellent quality ZrO2 thin films were successfully deposited on single-crystal silicon wafers by metal-organic chemical vapor deposition (MOCVD) at reduced pressures. For substrate temperatures below 530 °C, the film deposition rates were very small (⋚1 nm/min). The film deposition rates were significantly affected by (i) source temperature, (ii) substrate temperature, and (iii) total pressure. As-deposited films are carbon free. Furthermore, only the tetragonal ZrO2 phase was identified in as-deposited films. The tetragonal phase transformed progressively into the monoclinic phase as the films were subjected to a high-temperature post-deposition annealing. The optical properties of the ZrO2 thin films as a function of wavelength, in the range of 200 nm to 2000 nm, were also reported. In addition, a simplified theoretical model which considers only a surface reaction was used to analyze the deposition of ZrO2 films. The model predicated the deposition rates well for various conditions in the hot wall reactor.


Sign in / Sign up

Export Citation Format

Share Document