Energy losses of ions implanted in matter

1996 ◽  
Vol 11 (11) ◽  
pp. 2876-2883 ◽  
Author(s):  
J. H. Liang ◽  
K. Y. Liao

A set of simple and accurate formulae for the first four moments of nuclear and electronic energy losses is proposed. A new variable is introduced to include the finite maximum-impact-parameter effect in the nuclear stopping process, which is assumed to be infinite in most studies. A critical energy at which the electronic energy loss is equal to the nuclear energy loss is also defined. It determines whether the nuclear or the electronic stopping process is the dominant mechanism in terms of incident-ion energy. The critical energy increases for heavy ions implanted in heavy target materials during the first moment of energy loss. The second moment of electronic energy loss is important only for light ions implanted at high ion energies. The third and fourth moments of nuclear energy loss are much larger than those of the electronic energy loss for all ion-target combinations. Theoretical predications of the projected ranges and range stragglings for gold ions implanted in carbon films are close to the experimental data when these proposed four moments of nuclear and electronic energy losses are considered.

1997 ◽  
Vol 504 ◽  
Author(s):  
C. Trautmann ◽  
J. M. Costantini ◽  
A. Meftah ◽  
K. Schwartz ◽  
J. P. Stoquert ◽  
...  

ABSTRACTA pronounced swelling effect occurs when irradiating SiO2 quartz with heavy ions (F, S, Cu, Kr, Xe, Ta, and Pb) in the electronic energy loss regime. Using a profilometer, the out-of-plane swelling was measured by scanning over the border line between an irradiated and a virgin area of the sample surface. The step height varied between 20 and 300 nm depending on the fluence, the electronic energy loss and the total range of the ions. From complementary Rutherford backscattering experiments under channelling condition (RBS-C), the damage fraction and corresponding track radii were extracted. Normalising the step height per incoming ion and by the projected range, a critical energy loss of 1.8 ± 0.5 keV/nm was found which is in good agreement with the threshold observed by RBS-C. Swelling can be explained by the amorphisation induced along the ion trajectories. The experimental results in quartz are compared to swelling data obtained under similar irradiation conditions in LiNbO3


1989 ◽  
Vol 157 ◽  
Author(s):  
X.L. Xu ◽  
Zhou Zuyao ◽  
Chen Lizhi ◽  
Zou Shichang

ABSTRACTThree types of ions with different atomic masses (B , Ar and As ) were chosen to irradiate polyimide films in similar conditions in order to check mechanisms of the formation of ion beam induced damage in polyimide. A four-point probe technique was used to measure sheet resistivities of implanted films. An ion mass effect on conductivity of ion irradiated polyimide film was discovered. The ion mass effect on ion beam induced change of conductivity and on the energy loss process of the ions in polyimide suggest that the electronic energy loss of incident ions is an important factor for the increase of conductivity of implanted polyimide, and the contributions of recoil ionization are restricted by the grave damages as a result of nuclear energy loss process of ions in targets. Our hypothesis is supported by automatic spreading resistance measurement of B implanted polyimide film coated on silicon substrate. The results of this work have been compared with the hypothesis of degradation through direct knock on of atoms in polyimide, proposed by D.Fink et al [Nucl. Instr. and Meths B32 (1988) 125]


Sign in / Sign up

Export Citation Format

Share Document