Strength and interface-constrained plasticity in thin metal films

2003 ◽  
Vol 18 (10) ◽  
pp. 2281-2284 ◽  
Author(s):  
Y-L. Shen

This study seeks to provide a mechanistic rationale for the substrate confinement effect on the strength and plasticity of thin metal films. Atomistic simulations of tensile loading of the freestanding and substrate-bonded films were carried out. Particular attention was devoted to correlating the overall mechanical response and the defect mechanisms on the atomic scale. The existence of an interface with the underlying substrate was observed to constrain significantly the dislocation motion in the film. The extent of film strengthening due to the substrate was dictated by the capability of atoms to slide along the interface.

2003 ◽  
Vol 795 ◽  
Author(s):  
E. S. Ege ◽  
Y.-L. Shen

ABSTRACTAtomistic simulations using molecular statics are carried out to study dislocation plasticity in thin metal films attached to stiff substrates. The analysis utilizes a sample two-dimensional crystal, with an embedded initial point defect used for triggering dislocation activities in a controlled manner. The existence of an interface between the film and the substrate is shown to delay plastic yielding and lead to film strengthening. The capability of atoms to slide along the interface plays a crucial role in determining the macroscopic stress-strain response and the microscopic dislocation activities. Within the modeling framework we examine the quantitative interfacial sliding behavior and the resulting dislocation-interface interactions and their consequences.


2004 ◽  
Vol 20 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Y.-L. Shen ◽  
R. W. Leger

ABSTRACTNumerical simulations based on molecular statics are carried out to study nano-scale plastic deformation behavior in thin metal films. Particular attention is devoted to correlating the overall mechanical response and the underlying crystal defect mechanisms during mechanical loading. The simulations are within the two-dimensional framework involving pair molecular interactions in singlecrystal materials. Special modeling features are utilized for studying the formation of dislocations, interface characteristics, and defect interactions. Specific problems investigated in this work include: plastic deformation and tensile fracture in a free-standing film, interface-constrained plasticity in substrate-bonded films, and homogeneous nucleation of dislocations during nanoindentation.


Author(s):  
L. M. Gignac ◽  
K. P. Rodbell

As advanced semiconductor device features shrink, grain boundaries and interfaces become increasingly more important to the properties of thin metal films. With film thicknesses decreasing to the range of 10 nm and the corresponding features also decreasing to sub-micrometer sizes, interface and grain boundary properties become dominant. In this regime the details of the surfaces and grain boundaries dictate the interactions between film layers and the subsequent electrical properties. Therefore it is necessary to accurately characterize these materials on the proper length scale in order to first understand and then to improve the device effectiveness. In this talk we will examine the importance of microstructural characterization of thin metal films used in semiconductor devices and show how microstructure can influence the electrical performance. Specifically, we will review Co and Ti silicides for silicon contact and gate conductor applications, Ti/TiN liner films used for adhesion and diffusion barriers in chemical vapor deposited (CVD) tungsten vertical wiring (vias) and Ti/AlCu/Ti-TiN films used as planar interconnect metal lines.


2021 ◽  
Vol 494 ◽  
pp. 229344
Author(s):  
Roelof J. Kriek ◽  
Liesel A. van Heerden ◽  
Anzel Falch ◽  
Malcolm I. Gillespie ◽  
Alaa Y. Faid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document