scholarly journals Structure of (001)-, (110)-, and (111)-oriented Pb(Fe1/2Nb1/2)O3 epitaxial thin films on SrRuO3-buffered SrTiO3 substrates

2008 ◽  
Vol 23 (3) ◽  
pp. 663-670 ◽  
Author(s):  
Li Yan ◽  
Jiefang Li ◽  
D. Viehland

We have studied the lattice structure of variously oriented lead iron niobate (PFN) thin films with thicknesses of 50 < t < 500 nm that were deposited by pulsed laser deposition (PLD). We have identified that (001)-, (110)-, and (111)-oriented PFN thin films have tetragonal, orthorhombic, and rhombohedral phases at room temperature, respectively. The change in phase stability, when deposited on substrates of different orientations, is discussed with respect to the influence of epitaxial stress.

2010 ◽  
Vol 75 ◽  
pp. 202-207
Author(s):  
Victor Ríos ◽  
Elvia Díaz-Valdés ◽  
Jorge Ricardo Aguilar ◽  
T.G. Kryshtab ◽  
Ciro Falcony

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) and Bi-Pb-Sb-Sr-Ca-Cu-O (BPSSCCO) thin films were grown on MgO single crystal substrates by pulsed laser deposition. The deposition was carried out at room temperature during 90 minutes. A Nd:YAG excimer laser ( = 355 nm) with a 2 J/pulse energy density operated at 30 Hz was used. The distance between the target and substrate was kept constant at 4,5 cm. Nominal composition of the targets was Bi1,6Pb0,4Sr2Ca2Cu3O and Bi1,6Pb0,4Sb0,1Sr2Ca2Cu3OSuperconducting targets were prepared following a state solid reaction. As-grown films were annealed at different conditions. As-grown and annealed films were characterized by XRD, FTIR, and SEM. The films were prepared applying an experimental design. The relationship among deposition parameters and their effect on the formation of superconducting Bi-system crystalline phases was studied.


2004 ◽  
Vol 36 (4-6) ◽  
pp. 403-408 ◽  
Author(s):  
D. O’Mahony ◽  
F. McGee ◽  
M. Venkatesan ◽  
J.G. Lunney ◽  
J.M.D. Coey

2005 ◽  
Vol 133 (10) ◽  
pp. 641-645 ◽  
Author(s):  
Yimin Cui ◽  
Chunchang Wang ◽  
Bisong Cao

2004 ◽  
Vol 201 (10) ◽  
pp. 2385-2389 ◽  
Author(s):  
Yanwei Ma ◽  
M. Guilloux-Viry ◽  
O. Pena ◽  
C. Moure

2008 ◽  
Vol 202 (22-23) ◽  
pp. 5467-5470 ◽  
Author(s):  
Norihiro Sakai ◽  
Yoshihiro Umeda ◽  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami

2011 ◽  
Vol 519 (10) ◽  
pp. 3312-3317 ◽  
Author(s):  
Hanbin Wang ◽  
Qiong He ◽  
Hao Wang ◽  
Xina Wang ◽  
Jun Zhang ◽  
...  

1997 ◽  
Vol 472 ◽  
Author(s):  
M.A. El Khakani ◽  
M. Chaker

ABSTRACTReactive pulsed laser deposition has been used to deposit IrO2 thin films on both SiO2 and fused quartz substrates, by ablating a metal iridium target in oxygen atmosphere. At a KrF laser intensity of about 1.7 × 109 W/cm2, IrO2 films were deposited at substrate deposition temperatures ranging from room-temperature to 700 °C under an optimum oxygen ambient pressure of 200 mTorr. The structure, morphology, electrical resistivity and optical transmission of the deposited films were characterized as a function of their deposition temperature (Td). High quality IrO2 films are obtained in the 400–600 °C deposition temperature range. They are polycrystalline with preferred orientations, depending on the substrate, and show a dense granular morphology. At a Td as low as 400 °C, highly conductive IrO2 films with room-temperature resistivities as low as (42±6) μΩ cm are obtained. Over the 300–600 °C Td range, the IrO2 films were found to exhibit a maximum optical transmission at 450 °C (∼ 45 % at 500 nm for 80 nm-thick films).


Sign in / Sign up

Export Citation Format

Share Document