Antimony-doped tin oxide nanoparticles for conductive polymer nanocomposites

2008 ◽  
Vol 23 (3) ◽  
pp. 869-880 ◽  
Author(s):  
W.E. Kleinjan ◽  
J.C.M. Brokken-Zijp ◽  
R. van de Belt ◽  
Z. Chen ◽  
G. de With

Nanoparticles of antimony-doped tin oxide (ATO) were characterized for 0–33.3% Sb doping, both in aqueous dispersion and as dried powder. Antimony is incorporated in the cassiterite SnO2 structure of the ATO nanoparticles (d ≈ 7 nm) up to the highest doping levels, mainly as SbV, but with increasing Sb doping the SbIII content increases. We found adsorption of NH3 at the particle surface and evidence for the incorporation of nitrogen in the crystal lattice of the particles. The total nitrogen content increases with increasing Sb doping of the particles. Compact powder conductivity measurements show an increase in conductivity of ATO powder up to 13% Sb and a small decrease for higher Sb contents. Furthermore, we show that these particles can be used to prepare highly transparent conductive cross-linked ATO/acrylate nanocomposites with a continuous fractal particle network through the polymer matrix and a very low percolation threshold (ϕc ≈ 0.3 vol%).

Author(s):  
Ivan Merino-Garcia ◽  
Lionel Tinat ◽  
Jonathan Albo ◽  
Manuel Alvarez-Guerra ◽  
Angel Irabien ◽  
...  

2017 ◽  
Vol 5 (48) ◽  
pp. 25177-25186 ◽  
Author(s):  
Sebastiano Bellani ◽  
Leyla Najafi ◽  
Gabriele Tullii ◽  
Alberto Ansaldo ◽  
Reinier Oropesa-Nuñez ◽  
...  

Indium tin oxide nanoparticles break optical transparency/high-areal capacitance trade-off for advanced aqueous supercapacitors.


Langmuir ◽  
2006 ◽  
Vol 22 (22) ◽  
pp. 9260-9263 ◽  
Author(s):  
Atsumi Wakabayashi ◽  
Yuki Sasakawa ◽  
Toshiaki Dobashi ◽  
Takao Yamamoto

Sign in / Sign up

Export Citation Format

Share Document