Theoretical comparison of lattice parameter and particle size determination of pure tin oxide nanoparticles from powder X-ray diffraction

Author(s):  
t. Amutha ◽  
M. Rameshbabu ◽  
S. Muthupandi ◽  
K. Prabha
2017 ◽  
Vol 35 (3) ◽  
pp. 534-538 ◽  
Author(s):  
Adli A. Saleh ◽  
A. F. Qasrawi ◽  
G. Yumuşak ◽  
A. Mergen

AbstractIn this work, physical properties of neodymium tin oxide pyrochlore ceramics prepared by solid state reaction technique are investigated by means of X-ray diffraction, scanning electron microscopy, ultraviolet-visible light (UV-Vis) spectrophotometry and temperature dependent electrical resistivity measurements. The pyrochlore is observed to have a cubic FCC crystal lattice with lattice parameter of 10.578 Å. The planes of the cubic cell are best oriented in the [2 2 2] direction. From the X-ray, the UV-Vis spectrophotometry and the electrical resistivity data analysis, the grain size, strain, dislocation density, optical and thermal energy band gaps, localized energy band tail states and resistivity activation energies are determined and discussed. The pyrochlore is observed to have an optical energy band gap of ~3.40 eV. This value corresponds to 365 nm UV light spectra which nominates the neodymium tin oxide pyrochlore ceramics for the use as UV sensors.


2006 ◽  
Vol 2006 ◽  
pp. 1-7 ◽  
Author(s):  
Ganhua Lu ◽  
Kyle L. Huebner ◽  
Leonidas E. Ocola ◽  
Marija Gajdardziska-Josifovska ◽  
Junhong Chen

Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide (SnO2) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Simona Liliana Iconaru ◽  
Alina Mihaela Prodan ◽  
Philippe Le Coustumer ◽  
Daniela Predoi

The glycerol iron oxide nanoparticles (GIO-NPs) were obtained by an adapted coprecipitation method. The X-ray diffraction (XRD) studies demonstrate that GIO-NPs were indexed into the spinel cubic lattice with a lattice parameter of 0.835 nm. The refinement of XRD spectra indicated that no other phases except maghemite were detected. The adsorption of glycerol on iron oxide nanoparticles was investigated by Fourier transform infrared (FTIR) spectroscopy. On the other hand, this work implicated the use of GIO-NPs in antibacterial studies. The results indicate that, in the case ofP. aeruginosa  1397biofilms, at concentrations from 0.01 mg/mL to 0.625 mg/mL, the glycerol iron oxide inhibits the ability of this strain to develop biofilms on the inert substratum.


2002 ◽  
Vol 35 (5) ◽  
pp. 577-580 ◽  
Author(s):  
Zein Heiba ◽  
Hasan Okuyucu ◽  
Y. S. Hascicek

Nanosized polycrystalline samples of (Er1−uGdu)2O3(0 ≤u≤ 1.0) were synthesized by a sol–gel technique. X-ray diffraction data were collected and the crystal structures were refined by the Rietveld method. All samples are found to have the same crystal system and formed solid solutions over the whole range ofu. The Er3+and Gd3+ions were randomly distributed over two cationic sites, 8band 24d, in the space groupIa\bar{3} (206) in all refined structures. The lattice parameter was found to vary non-linearly with the composition (u). The average microstrain and average crystallite size have been calculated from the Williamson–Hall plots for each sample. The average size ranges from 50 to 70 nm, and the microstrain from 0.4 to 1.7%.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 913
Author(s):  
Zhimao Wang ◽  
Jean-Luc Grosseau-Poussard ◽  
Benoît Panicaud ◽  
Guillaume Geandier ◽  
Pierre-Olivier Renault ◽  
...  

In order to clarify the mechanical features of a metal under thermal cyclic loading for the system Ni30Cr-Cr2O3, a specific study has been carried out. In the present work, the residual stresses in both the metal and the oxide layer have been investigated. An adapted method is applied to process the experimental results that were obtained by using in-situ high temperature synchrotron diffraction at European Synchrotron Radiation Facility. The sin2ψ analysis provides information about the stress in metal and oxide. X-ray diffraction provides also the lattice parameter between crystallographic planes in the metal. To obtain correct stress values, a correction method is also proposed taking into account different discrepancies sources to ensure the equation of mechanical balance.


Sign in / Sign up

Export Citation Format

Share Document