Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia

2008 ◽  
Vol 23 (12) ◽  
pp. 3415-3424 ◽  
Author(s):  
Koichiro Hayashi ◽  
Toshifumi Shimizu ◽  
Hidefumi Asano ◽  
Wataru Sakamoto ◽  
Toshinobu Yogo

Size-controlled spinel iron oxide (SIO) nanoparticle/organic hybrid was synthesized in situ from iron (III) allylacetylacetonate (IAA) at around 80 °C. The formation of SIO particles chemically bound with organics was confirmed by infrared and x-ray photoelectron spectroscopy. The sizes of SIO nanoparticles in the hybrids were monodispersed and ranged from 7 to 23 nm under controlled hydrolysis conditions. The hybrid including SIO particles of 7.3 nm was superparamagnetic, whereas those dispersed with particles above 11 nm were ferrimagnetic. The specific absorption rate (SAR) value was dependent upon the magnetic properties of the hybrid at 100 Oe. The SAR was 15.2 W g−1 in a 230 kHz alternating magnetic field and 100 Oe when the crystallite size of SIO particle in the hybrid was 16 nm. The temperatures of agars dispersed with hybrid powders of 5 and 8 mg ml−1 reached the optimum temperature (42 °C) for 17 and 8 min, respectively. The increase in temperature was controlled in terms of the strength of magnetic field. The simulation of heat transfer in the agar phantom model revealed that the suitable temperature distribution for therapy was attained from 15 to 20 min at 230 kHz and 100 Oe.

2020 ◽  
Vol 21 (10) ◽  
pp. 3658
Author(s):  
Min Kyoung Kang ◽  
Tae Jung Kim ◽  
Young-Ju Kim ◽  
Lamie Kang ◽  
Jonghoon Kim ◽  
...  

This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffered saline (PBS group), ICH with intravenous injection of magnetosome-like ferrimagnetic iron oxide nanocubes (FION)-labeled SNMs (SNMs* group), and ICH with intravenous injection of FION-labeled SNMs followed by three days of external magnetic field exposure for targeted delivery by a magnet-embedded helmet (SNMs*+Helmet group). On day 3 after ICH induction, an increased Prussian blue-stained area and decreased swelling volume were observed in the SNMs*+Helmet group compared with that of the other groups. A significantly decreased recruitment of macrophages and neutrophils and a downregulation of pro-inflammatory cytokines followed by improved neurological function three days after ICH were observed in the SNMs*+Helmet group. Hemispheric atrophy at six weeks after ICH was significantly decreased in the SNMs*+Helmet group compared with that of the PBS group. In conclusion, we have developed a targeted delivery system using FION tagged to stem cells and a magnet-embedded helmet. The targeted delivery of SNMs might have the potential for developing novel therapeutic strategies for ICH.


2021 ◽  
Vol 237 ◽  
pp. 103741 ◽  
Author(s):  
Sadjad Mohammadian ◽  
Beate Krok ◽  
Andreas Fritzsche ◽  
Carlo Bianco ◽  
Tiziana Tosco ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (27) ◽  
pp. 13098-13107 ◽  
Author(s):  
Ryan Hufschmid ◽  
Eric Teeman ◽  
B. Layla Mehdi ◽  
Kannan M. Krishnan ◽  
Nigel D. Browning

Iron oxide nanoparticle surface chemistry controls growth and dissolution, which are observed in real-time usingin situliquid cell Scanning Transmission Electron Microscopy (STEM).


2000 ◽  
Vol 15 (10) ◽  
pp. 2114-2120 ◽  
Author(s):  
Toshinobu Yogo ◽  
Tomoyuki Nakamura ◽  
Wataru Sakamoto ◽  
Shin-ichi Hirano

A transparent magnetic particle/organic film was synthesized from an iron–organic compound. Iron(III) 3-allylacetylacetonate (IAA) was polymerized followed by in situ hydrolysis yielding an iron oxide particle/oligomer hybrid. The sizes of magnetic particles were dependent upon the hydrolysis conditions of the IAA oligomers. A nanometer-sized ferrimagnetic iron oxide particle/oligomer hybrid showed a magnetization curve with no coercive force at 300 K and that with Hc of 200 Oe at 4.2 K, respectively. The magnetization versus H/T curves at 300 and 77 K were superimposed on each other and satisfied the Langevin equation. The transparent hybrid film showed a magnetization curve at room temperature. The absorption spectrum of the film was shifted to higher energy by 0.14 eV compared with that of bulk magnetite. The absorption edge of the film was blue-shifted.


2015 ◽  
Vol 11 (3) ◽  
pp. 457-468 ◽  
Author(s):  
Lijun Wang ◽  
Yue Min ◽  
Zhigang Wang ◽  
Cristina Riggio ◽  
M. Pilar Calatayud ◽  
...  

2020 ◽  
Vol 124 (43) ◽  
pp. 23949-23963
Author(s):  
Jiayang Hu ◽  
Evan W. C. Spotte-Smith ◽  
Brady Pan ◽  
Roy J. Garcia ◽  
Carlos Colosqui ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (90) ◽  
pp. 49086-49089 ◽  
Author(s):  
Irena Milosevic ◽  
Fabienne Warmont ◽  
Yoann Lalatonne ◽  
Laurence Motte

The formation of iron oxide NPs in scaled-up conditions is monitored in situ using a handled magnetic portable sensor.


Sign in / Sign up

Export Citation Format

Share Document