scholarly journals Targeted Delivery of Iron Oxide Nanoparticle-Loaded Human Embryonic Stem Cell-Derived Spherical Neural Masses for Treating Intracerebral Hemorrhage

2020 ◽  
Vol 21 (10) ◽  
pp. 3658
Author(s):  
Min Kyoung Kang ◽  
Tae Jung Kim ◽  
Young-Ju Kim ◽  
Lamie Kang ◽  
Jonghoon Kim ◽  
...  

This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffered saline (PBS group), ICH with intravenous injection of magnetosome-like ferrimagnetic iron oxide nanocubes (FION)-labeled SNMs (SNMs* group), and ICH with intravenous injection of FION-labeled SNMs followed by three days of external magnetic field exposure for targeted delivery by a magnet-embedded helmet (SNMs*+Helmet group). On day 3 after ICH induction, an increased Prussian blue-stained area and decreased swelling volume were observed in the SNMs*+Helmet group compared with that of the other groups. A significantly decreased recruitment of macrophages and neutrophils and a downregulation of pro-inflammatory cytokines followed by improved neurological function three days after ICH were observed in the SNMs*+Helmet group. Hemispheric atrophy at six weeks after ICH was significantly decreased in the SNMs*+Helmet group compared with that of the PBS group. In conclusion, we have developed a targeted delivery system using FION tagged to stem cells and a magnet-embedded helmet. The targeted delivery of SNMs might have the potential for developing novel therapeutic strategies for ICH.

2008 ◽  
Vol 23 (12) ◽  
pp. 3415-3424 ◽  
Author(s):  
Koichiro Hayashi ◽  
Toshifumi Shimizu ◽  
Hidefumi Asano ◽  
Wataru Sakamoto ◽  
Toshinobu Yogo

Size-controlled spinel iron oxide (SIO) nanoparticle/organic hybrid was synthesized in situ from iron (III) allylacetylacetonate (IAA) at around 80 °C. The formation of SIO particles chemically bound with organics was confirmed by infrared and x-ray photoelectron spectroscopy. The sizes of SIO nanoparticles in the hybrids were monodispersed and ranged from 7 to 23 nm under controlled hydrolysis conditions. The hybrid including SIO particles of 7.3 nm was superparamagnetic, whereas those dispersed with particles above 11 nm were ferrimagnetic. The specific absorption rate (SAR) value was dependent upon the magnetic properties of the hybrid at 100 Oe. The SAR was 15.2 W g−1 in a 230 kHz alternating magnetic field and 100 Oe when the crystallite size of SIO particle in the hybrid was 16 nm. The temperatures of agars dispersed with hybrid powders of 5 and 8 mg ml−1 reached the optimum temperature (42 °C) for 17 and 8 min, respectively. The increase in temperature was controlled in terms of the strength of magnetic field. The simulation of heat transfer in the agar phantom model revealed that the suitable temperature distribution for therapy was attained from 15 to 20 min at 230 kHz and 100 Oe.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dajeong Yoon ◽  
Dogeon Yoon ◽  
Heejoong Sim ◽  
Inseok Hwang ◽  
Ji-Seon Lee ◽  
...  

Fibroblasts synthesize and secrete dermal collagen, matrix proteins, growth factors, and cytokines. These characteristics of fibroblasts provide a potential way for fibroblast therapy to treat skin ulcers more effectively than conventional therapies such as cytokine therapy and negative pressure wound therapy. However, the obstacle to the commercialization of fibroblast therapy is the limited supply of cells with consistent quality. In this study, we tested whether human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) could be differentiated into fibroblasts considering that they have characteristics of high differentiation rates, unlimited proliferation possibility from a single colony, and homogeneity. As a result, hESC-MSC-derived fibroblasts (hESC-MSC-Fbs) showed a significant increase in the expression of type I and III collagen, fibronectin, and fibroblast-specific protein-1 (FSP-1). Besides, vessel formation and wound healing were enhanced in hESC-MSC-Fb-treated skin tissues compared to PBS- or hESC-MSC-treated skin tissues, along with decreased IL-6 expression at 4 days after the formation of pressure ulcer wound in a mouse model. In view of the limited available cell sources for fibroblast therapy, hESC-MSC-Fbs show a promising potential as a commercial cell therapy source to treat skin ulcers.


2011 ◽  
Vol 15 (12) ◽  
pp. 43-44

Singapore Scientists Lead Human Embryonic Stem Cell Study to Advance Regenerative Medicine Research. Singapore Scientists Discover Genetic Link in Kawasaki Disease. Stem Cells Engineered to Kill Cancer.


2020 ◽  
Vol 11 (1) ◽  
pp. 232-240 ◽  
Author(s):  
M. Sponchioni ◽  
C. T. O'Brien ◽  
C. Borchers ◽  
E. Wang ◽  
M. N. Rivolta ◽  
...  

It is shown that hydroxyl functionality is required to induce stasis in human embryonic stem cell colonies immersed within wholly synthetic block copolymer worm gels with comparable storage moduli. Thus gel softness does not appear to be an essential parameter for stasis induction.


Sign in / Sign up

Export Citation Format

Share Document