Effect of heat treatment on the reflective spectrum of zinc oxide powders

2009 ◽  
Vol 24 (1) ◽  
pp. 19-23 ◽  
Author(s):  
M.M. Mikhailov ◽  
V.V. Neshchimenko ◽  
Chundong Li ◽  
Shiyu He ◽  
Dezhuang Yang

To determine the optimum baking temperatures for nanopowder introduction, the variation of reflective spectrum of baked zinc oxide powders, which are used as pigments for thermal control coatings of spacecraft, has been investigated over the wavelength range of 0.225–2.5 μm after being baked at temperatures between 400 °C and 850 °C. It has been established that baking temperatures over 750 °C result in a reduction of spectral reflectance in the visible light spectrum region. This is due to the formation of absorption bands of intrinsic point defects and thus increasing the spectral reflectance in the near-infrared region. The optimum temperature is 650 °C at which the bleaching effect was observed long after heat treatment. Moreover, an increase in the reflection coefficient occurs in the regions of 380–450 nm and 1100–2500 nm in this case.

1994 ◽  
Vol 2 (2) ◽  
pp. 59-65 ◽  
Author(s):  
J. Todd Kuenstner ◽  
Karl H. Norris

Absorbance and first and second derivative absorbance spectra and quarter-millimolar absorptivity coefficients for hemoglobin species including oxy-, deoxy-, carboxy- and methemoglobin in the visible and in the near infrared regions from 620 nm to 2500 nm are presented. At wavelengths longer than 1500 nm, the absorbance and second derivative absorbance spectra of hemoglobin species are similar for all of the species. Absorption bands are present centred at 1690, 1740, 2056, 2170, 2290 and 2350 nm.


2009 ◽  
Vol 1173 ◽  
Author(s):  
Kazuma Tsuboi ◽  
Hidetoshi Matsumoto ◽  
Mie Minagawa ◽  
Akihiko Tanioka

AbstractIn this paper we report new excitation method of surface plasmon polariton (SPP) at air/gold interface with electrospun nanofibers. Nanofibers of polyvinylpirrolidone were electrospun onto the surface of a gold film. The observations by scanning electron microscopy and optical microscopy indicated that the average diameters of the nanofibers were about 300 nm and average sizes of pores were about 30-40 μm. Optical response of the nanofibers on gold surface was investigated by polarized reflection absorption spectroscopy (RAS). The RAS spectrum with p-polarized light showed two absorption bands while the spectrum with s-polarized light only one band. One is a band at about 520 nm that also found in the spectrum with s-polarized light. Another is a broad band in the near-infrared region which found only with p-polarized light. The peak intensity of the latter band increases with increase of incident angle of the polarized light and the peak wavelength of the band shifted to longer wavelength. These responses suggested that SPP at air/gold interface was excited with the scattering light from the electrospun nanofibers. We also found that the peak wavelength of the absorption band in near-infrared region changed with the increase of the amount of the nanofibers. This may be due to the fact that the sizes of the pores on gold surface became smaller than the propagation length of SPP, which resulted in scattering and interference of SPP.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 570
Author(s):  
Sujittra Kaenphakdee ◽  
Pimpaka Putthithanas ◽  
Supan Yodyingyong ◽  
Jeerapond Leelawattanachai ◽  
Wannapong Triampo ◽  
...  

The synthesis of ZnO comprising different ratios of zinc acetate (ZA) and zinc nitrate (ZN) from the respective zinc precursor solutions was successfully completed via a simple precipitation method. Zinc oxide powders with different mole ratios of ZA/ZN were produced—80/1, 40/1, and 20/1. The crystallinity, microstructure, and optical properties of all produced ZnO powders were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis-NIR spectrophotometry. The average agglomerated particle sizes of ZnO-80/1, ZnO-40/1, and ZnO-20/1 were measured at 655, 640, and 620 nm, respectively, using dynamic light scattering (DLS). The optical properties of ZnO were significantly affected by the extreme ratio differences in the zinc precursors. ZnO-80/1 was found to have a unique coral-sheet structure morphology, which resulted in its superior ability to reflect near-infrared (NIR) radiation compared to ZnO-40/1 and ZnO-20/1. The NIR-shielding performances of ZnO were assessed using a thermal insulation test, where coating with ZnO-80/1 could lower the inner temperature by 5.2 °C compared with the neat glass substrate. Due to the synergistic effects on morphology, ZnO-80/1 exhibited the property of enhanced NIR shielding in curtailing the internal building temperature, which allows for its utilization as an NIR-reflective pigment coating in the construction of building envelopes.


2018 ◽  
Vol 768 ◽  
pp. 187-192
Author(s):  
Jian Wen ◽  
Xiu Li Fu ◽  
Zhao Xian Liu ◽  
Zhi Jian Peng

In this work, the photoelectric properties of ZnO1-x/graphene heterostructures were investigated. Such ZnO1-x/graphene heterostructures were constructed from non-stoichiometric zinc oxide (ZnO1-x) film and graphene by first depositing ZnO1-x layer through radio frequency magnetron sputtering onto silicon wafers with SiO2 layer and then transferring graphene via a wet method. It was revealed that such heterostructures could have improved photoelectric properties. Compared with ZnO1-x films, the absorbance of the ZnO1-x/graphene heterostructures in visible and near-infrared region was enhanced; and due to the high conductivity of graphene, the photocurrent was significantly enhanced both in dark and under irradiation of a 700 nm light. By calculating the absolute current gain, it was revealed that the fabricated ZnO1-x/graphene heterostructures would have a higher current gain. Thus, such ZnO1-x/graphene heterostructures would be promisingly applied in visible light to near-infrared detection devices.


2013 ◽  
Vol 821-822 ◽  
pp. 1236-1239 ◽  
Author(s):  
Xiaoan Yue ◽  
Zheng Quan Zhang ◽  
En Ze Wang ◽  
Song Qin Xia

Thermal control coatings (TCCs) play an important role in thermal management of spacecrafts and satellites by their thermo-optical properties. In this research, the novel TCCs were prepared by incorporating the self-made strontium silicate and zinc oxide into the potassium silicate binder. The effects of strontium silicate on phase composition, microstructure and optical performance of TCCs were studied using scanning electron microscope and spectroreflectometer. The results show that: strontium silicate can improve near infrared band (1000~2400nm) spectra reflectance. Compared with traditional zinc oxide TCCs, the novel composite coatings enhance the reflectance , and improve the optical properties.


2020 ◽  
Author(s):  
Tomas Kohout ◽  
Evgeniya Petrova ◽  
Grigoriy Yakovlev ◽  
Victor Grokhovsky ◽  
Antti Penttilä ◽  
...  

<p><strong>Introduction</strong></p><p>Shock-induced changes in planetary materials related to impacts or planetary collisions are known to be capable of altering their optical properties. One such example is observed in ordinary chondrite meteorites. The highly shocked silicate-rich ordinary chondrite material is optically darkened and its typical S-complex-like asteroid spectrum is altered toward a darker, featureless spectrum resembling the C/X complex asteroids. Thus, one can hypothesize that a significant portion of the ordinary chondrite material may be hidden within the observed C/X asteroid population.</p><p>The exact pressure-temperature conditions of the shock-induced darkening are, however, not well constrained and due to this gap in knowledge, it is not possible to correctly assess the significance of the shock darkening within the asteroid population. In order to address this shortcoming, we experimentally investigate the gradual changes in the chondrite material optical properties together with the associated mineral and textural features as a function of the shock pressure. For this purpose, we use a Chelyabinsk meteorite (LL5 chondrite), which is subjected to a spherical shock experiment. The spherical shock experiment geometry allows for a gradual increase in the shock pressure within a single spherically shaped sample from 15 GPa at its rim toward hundreds of gigapascals in the center.</p><p><strong>Results</strong></p><p>Four distinct zones were observed with an increasing shock load (Fig. 1). We number the zones in the direction of increasing shock from the outside toward the center as zones I–IV The optical changes in zone I are minimal up to ~50 GPa. In the region of ~50–60 GPa corresponding to zone II, shock darkening occurs due to the troilite melt infusion into silicates. This process abruptly ceases at pressures of ~60 GPa in zone III due to an onset of silicate melting and immiscibility of troilite and silicate melts. Silicate melt coats residual silicate grains and prevents troilite from further penetration into cracks. At pressures higher than ~150 GPa (zone IV), complete recrystallization occurs and is associated with a second-stage shock darkening due to fine troilite-metal eutectic grains.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.369960f7c0fe58218382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=65ce9691abaaf54f5e7768045027f7ea&ct=x&pn=gnp.elif" alt="" width="777" height="639"></p><p>The order of the spectral curves in the UV-VIS-NIR (ultraviolet – visible – near-infrared) region follows the visual brightness in which zone I is the brightest, followed by zones III and II, and zone IV is the darkest one (Fig. 2). The MIR reflectance (Fig. 3) follows the same albedo order as UV-VIS-NIR up to the primary Christiansen feature at 8.7 µm. At higher wavelengths in the Si-O reststrahlen bands region, the reflectance order changes with zones II and III, which are brighter than zones I and IV. The comparison of the powdered sample spectra to the one obtained from the rough saw-cut surface reveals the following trends. The overall reflectance of the powdered sample is an order of magnitude lower compared to the rough surface one. The reststrahlen bands in both samples show similar positions at approximately 9.1, 9.5–9.6, 10.3, 10.8, 11.3, and 11.8–12 µm. They are dominated by olivine with possible presence of orthopyroxene. The amplitudes of the reststrahlen bands are higher in the rough surface sample. The transparency feature at 12.7 µm is only observed in the powdered sample. The primary Christiansen feature at 8.7 µm is more pronounced in the powdered sample, while the secondary one at 15.6 µm is of a low amplitude in both samples.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.ad38963ac0fe50178382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=1cbf38a911d6e0bef4cff605b284362f&ct=x&pn=gnp.elif" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.4ff3f9a9c0fe59658382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=9e7ff0973b952ce0eed7a0fbfc5b24cc&ct=x&pn=gnp.elif" alt=""></p><p><strong>Conclusions</strong></p><p>The important finding is the presence of the two distinct shock darkening mechanisms in ordinary chondrite material with characteristic material fabric and distinct pressure regions. These two regions are separated by a pressure interval where no darkening occurs. Thus, the volume of the darkened material produced during asteroid collisions may be somewhat lower than assumed from a continuous darkening process. While the darkening mainly affects the UV-VIS-NIR region and 1 and 2-µm silicate absorption bands, it does not significantly affect the silicate spectral features in the MIR region. These are more affected by material roughness. MIR observations have the potential to identify darkened ordinary chondrite material with an otherwise featureless UV-VIS-NIR spectrum.</p>


2021 ◽  
Author(s):  
Ali Ayoubikaskooli ◽  
Abdol Mohammad Ghaedi ◽  
Hamid Reza Shamlouei ◽  
Yadollah Saghapour

Abstract In this research, the C50 fullerene was employed as the source of the π electrons and the electron donor-acceptor groups were used to enhance its optical properties. Considerable enhancement in its electronic and optical property of as the result of donor and acceptor group presence was observed. For instance, in UV-Visible absorption spectrum, the number of absorption lines significantly increase which may be the relaxation of the electronic transition selection rules. Considerably, the substituted forms of C50, has numbers of absorption bands in near infrared region. The BH2–C50-NCH3Li and NO–C50-NCH3Li molecules have superior improvement in optical properties. Finally, the donor and acceptor groups influence on non-linear optical properties (NLO) of C50 were explored and the considerable improvement in NLO properties of C50 was observed which the NLO improvements for BH2-C50-NCH3Li and NO-C50-CH2Li cases is higher than others.


1959 ◽  
Vol 32 (2) ◽  
pp. 628-638
Author(s):  
G. A. Blokh ◽  
A. F. Mal'nev

Abstract The newest physical-chemical methods of research enlarge the scope of study of the vulcanization process. There is a possibility of studying the structure changes during vulcanization of rubber by the application of infrared spectroscopy. Infrared rays are selectively absorbed. Therefore the infrared absorption spectrum can be used as a characteristic property of a substance and could be used for analytical purposes. The large spectral range of the infrared rays indicates their importance for the study of the properties and structure of substances; this makes possible the determination of the moments of inertia of atomic nuclei and molecules, isotopic mass, arrangement and strength of atomic bonds in the molecule and the frequencies of their vibrations. By knowing the frequencies for pure substances, molecular analyses of complicated mixtures of various organic rubbers, accelerators and other substances could be performed. The study of linear absorption spectra is the basis of the spectrographic method in the infrared region. Since the frequencies of near infrared radiation correspond to the characteristic frequencies of the atoms in the molecules, this method could be used to obtain interesting information concerning the structure of organic molecules, the chemical structure of high molecular weight compounds, the determination of the presence of specific groups or atoms in the rubber molecule, the character of the bonds between these groups and the order of arrangement of the individual chain links. This is true because the position of the absorption bands, which are specific for a given group of atoms, is practically the same for the different combinations in which the group occurs. The complicated process of polymerization of diene and vinyl compounds and the structure of different types of rubbers can be investigated with the aid of infrared spectroscopy. For example, Table I lists the characteristic absorption frequencies in the infrared region for some important chemical combinations.


Sign in / Sign up

Export Citation Format

Share Document