Nanostructural C-Al-N thin films studied by x-ray photoelectron spectroscopy, Raman and high-resolution transmission electron microscopy

2009 ◽  
Vol 24 (11) ◽  
pp. 3321-3330 ◽  
Author(s):  
Y.F. Han ◽  
T. Fu ◽  
Y.G. Shen

The effects of Al incorporation and post-deposition annealing on the structural properties of C-Al-N thin films prepared by reactive unbalanced dc-magnetron sputtering were investigated using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). XPS studies demonstrated the presence of abundant Al-N bonds in addition to C-C and N-C bonds. At low incorporations of Al and N, the films were found to be essentially amorphous. By Raman and HRTEM, the formation of ∼5 nm fullerene-like carbon nitride (FL-CNx) nanostructures in an amorphous (C, CNx) matrix was evidenced with increasing Al content in the films. Crystalline improvement of FL-CNx nanostructures was seen, as well as the precipitation of ∼3–4 nm face centered cubic (fcc-) AlN nanograins by thermal annealing at 500 °C or above. Through these improvements, C-Al-N nanocomposite thin films were achieved. The effects of the incorporated Al and annealing on stabilizing fcc-AlN nanograins and FL-CNx nanostructures are elucidated and explained through the use of thermodynamic considerations.

1998 ◽  
Vol 533 ◽  
Author(s):  
Glenn G. Jernigan ◽  
Conrad L. Silvestre ◽  
Mohammad Fatemi ◽  
Mark E. Twigg ◽  
Phillip E. Thompson

AbstractThe use of Sb as a surfactant in suppressing Ge segregation during SiGe alloy growth was investigated as a function of Sb surface coverage, Ge alloy concentration, and alloy thickness using xray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy. Unlike previous studies where Sb was found to completely quench Ge segregation into a Si capping layer, we find that Sb can not completely prevent Ge segregation while Si and Ge are being co-deposited. This results in the production of a non-square quantum well with missing Ge at the beginning and extra Ge at the end of the alloy. We also found that Sb does not relieve strain in thin films but does result in compositional or strain variations within thick alloy layers.


1995 ◽  
Vol 10 (6) ◽  
pp. 1546-1554 ◽  
Author(s):  
G.M. Chow ◽  
L.K. Kurihara ◽  
K.M. Kemner ◽  
P.E. Schoen ◽  
W.T. Elam ◽  
...  

Nanocrystalline CoxCu100−x (4 ⋚ x ⋚ 49 at. %) powders were prepared by the reduction of metal acetates in a polyol. The structure of powders was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), extended x-ray absorption fine structure (EXAFS) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, and vibrating sample magnetometry (VSM). As-synthesized powders were composites consisting of nanoscale crystallites of face-centered cubic (fcc) Cu and metastable face-centered cubic (fcc) Co. Complementary results of XRD, HRTEM, EXAFS, NMR, and VSM confirmed that there was no metastable alloying between Co and Cu. The NMR data also revealed that there was some hexagonal-closed-packed (hcp) Co in the samples. The powders were agglomerated, and consisted of aggregates of nanoscale crystallites of Co and Cu. Upon annealing, the powders with low Co contents showed an increase in both saturation magnetization and coercivity with increasing temperature. The results suggested that during preparation the nucleation of Cu occurred first, and the Cu crystallites served as nuclei for the formation of Co.


1995 ◽  
Vol 10 (1) ◽  
pp. 26-33 ◽  
Author(s):  
L.M. Porter ◽  
R.F. Davis ◽  
J.S. Bow ◽  
M.J. Kim ◽  
R.W. Carpenter

Thin films (4–1000 Å) of Co were deposited onto n-type 6H-SiC(0001) wafers by UHV electron beam evaporation. The chemistry, microstructure, and electrical properties were determined using x-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and I-V and C-V measurements, respectively. The as-deposited contacts exhibited excellent rectifying behavior with low ideality factors and leakage currents of n < 1.06 and 2.0 × 10−8 A/cm2 at −10 V, respectively. During annealing at 1000 °C for 2 min, significant reaction occurred resulting in the formation of CoSi and graphite. These annealed contacts exhibited ohmic-like character, which is believed to be due to defects created in the interface region.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
L. M. Artem ◽  
D. M. Santos ◽  
A. R. De Andrade ◽  
K. B. Kokoh ◽  
J. Ribeiro

This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of350∘C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm-3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol.


2007 ◽  
Vol 22 (9) ◽  
pp. 2460-2469 ◽  
Author(s):  
Y.H. Lu ◽  
Y.G. Shen

High-resolution transmission electron microscopy, x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used to study phase configuration and nanostructure evolutions of Ti–Cx–Ny thin films with different amounts of C incorporation. It was found that the atomic ratio of (C + N)/Ti played a crucial role in phase configuration and nanostructure evolutions as well as mechanical behaviors. When the ratio was less than one unit, a nanocrystalline (nc-) Ti(C, N) solid solution was formed by way of dissolution of C into TiN lattice. When this dissolution reached saturation, precipitation of a small amount of amorphous (a-) C phase along nc-Ti(C, N) grains was followed with more C incorporation. Further increase of C content (up to ∼19 at.% C) made the amorphous phase fully wet nanocrystallites, which resulted in the formation of two-phase nanocomposite thin films with microstructures comprising of ∼5 nm nc-Ti(C,N) crystallites separated by ∼0.5 nm a-(C, CNx) phase. Thicker amorphous walls and smaller sized grains were followed when the C content was further increased, accompanying with the formation of some disorders and defects in nc-grains and amorphous matrices. When the C content was increased to ∼48 at.%, 1–3 nm nanocrystallites with an average size of ∼2 nm were embedded into amorphous matrices. Both microhardness and residual compressive stress values were increased with increase of the atomic ratio in solid solution thin films when the atomic ratio value was less than one unit. Their maximums were obtained at stiochiometry nc-Ti(C,N) solid solution. Enhancement of hardness values was attributed to solid solution effect.


2010 ◽  
Vol 25 (5) ◽  
pp. 871-879 ◽  
Author(s):  
Emila Panda ◽  
Lars P.H. Jeurgens ◽  
Gunther Richter ◽  
Eric J. Mittemeijer

The microstructural evolution of ultrathin (<3 nm) oxide films grown on bare Al-based AlMg alloy substrates, by thermal oxidation in the temperature range of 300 to 610 K and at partial oxygen pressures in the range 10−4–10−2 Pa, was investigated by high-resolution transmission electron microscopy. Angle-resolved x-ray photoelectron spectroscopy was applied to establish the chemical constitution of the analyzed oxide films (i.e., the overall Al/Mg cationic ratio, as well as the relative depth distributions of Al and Mg in the grown oxide films). The ˜0.8-nm-thick (Al,Mg)-oxide film grown at 300 K is fully amorphous. A gradual development of long-range order in the oxide film sets in for thickening (Al,Mg)-oxide films of relatively high Mg content at T ≥ 475 K. The amorphous-to-crystalline transition proceeds by a phase separation: still predominantly amorphous oxide regions exist next to crystallized oxide regions, which are constituted of an MgO-type of oxide phase with a face-centered-cubic oxygen sublattice and an average lattice parameter of 4.146 ± 0.1 Å.


Sign in / Sign up

Export Citation Format

Share Document