Effect of a nanostructured surface layer on the tensile properties of 316L stainless steel

2013 ◽  
Vol 28 (10) ◽  
pp. 1311-1315 ◽  
Author(s):  
Pengfei Chui ◽  
Ouyang Jun ◽  
Yi Liu ◽  
Yanjie Liang ◽  
Yang Li ◽  
...  

Abstract

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
F. C. Lang ◽  
Y. M. Xing ◽  
J. Zhu ◽  
Y. R. Zhao

A nanostructured surface layer (NSSL) was generated on a 316L stainless steel plate through surface nanocrystallization (SNC). The grains of the surface layer were refined to nanoscale after SNC treatment. Moreover, the microstructure and mechanical properties of NSSL were analyzed with a transmission electron microscope (TEM) and scanning electron microscope (SEM), through nanoindentation, and through reverse analysis of finite element method (FEM). TEM results showed that the grains in the NSSL measured 8 nm. In addition, these nanocrystalline grains took the form of random crystallographic orientation and were roughly equiaxed in shape. In situ SEM observations of the tensile process confirmed that the motions of the dislocations were determined from within the material and that the motions were blocked by the NSSL, thus improving overall yielding stress. Meanwhile, the nanohardness and the elastic modulus of the NSSL, as well as those of the matrix, were obtained with nanoindentation technology. The reverse analysis of FEM was conducted with MARC software, and the process of nanoindentation on the NSSL and the matrix was simulated. The plastic mechanical properties of NSSL can be derived from the simulation by comparing the results of the simulation and of actual nanoindentation.


2011 ◽  
Vol 682 ◽  
pp. 115-119 ◽  
Author(s):  
Ling Zhu ◽  
Xin Min Fan

Nanostructured surface layer was synthesized on 316L stainless steel by means of high-speed rotation wire-brushing deformation (HRWD). The refined microstructure features were systematically characterized by optical microscopy (OM), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) observations. Furthermore, the microhardness was examined by microhardness tester. After HRWD treatment, obvious grain refinement was observed and a nanocrystalline surface layer was formed on 316L stainless steel. It was found that a gradient microstructure with grain size from nanoscale to microscale was obtained along the depth of its surface layer. The thickness of the nanocrystalline surface layer varies from a few to about 20μm depending upon the treatment duration and compressive stress. The microhardness of nanostructured surface layer was enhanced significantly, and along the depth from the top surface, the microhardness in the surface gradually decreased to that of the matrix. Besides, the grain refinement mechanism and behaviors were discussed.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract BioDur 316LS stainless steel is a modified version of Type 316L stainless steel to improve corrosion resistance for surgical implant applications. The alloy is vacuum arc remelted. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-596. Producer or source: Carpenter.


2020 ◽  
Vol 32 ◽  
pp. 101090 ◽  
Author(s):  
Ashley M. Roach ◽  
Benjamin C. White ◽  
Anthony Garland ◽  
Bradley H. Jared ◽  
Jay D. Carroll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document