Nanocomposite polymer electrolytes comprising PVA-graft-PEGME/TiO2 for Li-ion batteries

2014 ◽  
Vol 29 (5) ◽  
pp. 625-632 ◽  
Author(s):  
Hamide Aydın ◽  
Ayhan Bozkurt

Abstract

RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 7249-7259 ◽  
Author(s):  
J. Cardoso ◽  
A. Mayrén ◽  
I. C. Romero-Ibarra ◽  
D. P. Nava ◽  
J. Vazquez-Arenas

Novel poly(poly(ethylenglycol)methacrylate) nanocomposite electrolytes based on montmorillonite and zeolite; and functionalized with LiTFSI and PYR11TFSI are synthetized for Li-ion batteries.


2014 ◽  
Vol 11 (9/10/11) ◽  
pp. 882 ◽  
Author(s):  
S. Brutti ◽  
R. Scipioni ◽  
M.A. Navarra ◽  
S. Panero ◽  
V. Allodi ◽  
...  

2015 ◽  
Vol 3 (5) ◽  
pp. 2128-2134 ◽  
Author(s):  
Hongzan Song ◽  
Ningning Zhao ◽  
Weichao Qin ◽  
Bing Duan ◽  
Xiaoya Ding ◽  
...  

High-performance NCPE has been fabricated by using unidirectional freezing method, liquid crystal self-templating approach and vacuum degassing method.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1012
Author(s):  
Takuya Mabuchi ◽  
Koki Nakajima ◽  
Takashi Tokumasu

Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.


Sign in / Sign up

Export Citation Format

Share Document