scholarly journals Stress evolution in silicon nanowires during electrochemical lithiation using in situ synchrotron X-ray microdiffraction

2019 ◽  
Vol 34 (9) ◽  
pp. 1622-1631
Author(s):  
Sasi Kumar Tippabhotla ◽  
Ihor Radchenko ◽  
Camelia V. Stan ◽  
Nobumichi Tamura ◽  
Arief Suriadi Budiman

Abstract

2018 ◽  
Vol 6 ◽  
Author(s):  
Imran Ali ◽  
Sasi Kumar Tippabhotla ◽  
Ihor Radchenko ◽  
Ahmed Al-Obeidi ◽  
Camelia V. Stan ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1234-1235
Author(s):  
K.K. Fung ◽  
X.X. Zhang ◽  
Y.S. Kwok ◽  
Boxiong Qin

Over the years, the study of the oxidation of nanoparticles of iron by transmission electron microscopy (TEM), Mossbauer spectroscopy and X-ray diffraction has established that nanoparticles of iron have a core-shell morphology in which the iron core is enclosed by shell of polycrystalline shell of ultrasmall γ-Fe2O3 and Fe3O4 crystallites. Recently, passivated nanoparticles of iron prepared by gas condensation of plasma evaporated vapor in Tianjin University exhibit remarkable resistance to further oxidation and corrosion in air and water. We have showed by TEM that these nanoparticles of iron are protected by a 4 nm epitaxial shell of γ-Fe2O3. The epitaxial orientation relationship, established by convergent beam electron diffraction from a nanoparticle, is as follows:The [001] diffraction pattern of the oxide is rotated by 45° about a cubic axis relative to that of iron.


1992 ◽  
Vol 36 ◽  
pp. 411-422
Author(s):  
Chun Liu ◽  
Jean-Lou Lebrun ◽  
François Sibieude

AbstractA high temperature in situ X-Tay diffraction (HTXRD) instrument was devised for residual stress (RS) and X-ray elastic constant (XECs) investigations. The aim was to gain a better understanding of the stresses developed during high temperature oxidation, which is essential for the lifetime improvement of refractory alloys. The investigators use sin2ψ method to survey the stress evolution during oxidation in both the scale and the substrate, and differential method to determine the XECs that relate the measured/measurable deformation to the stress state of the materials studied. The stresses on the Ni/NiO system are measured in situ. The XECs are determined on XC75 steel samples. This paper presents the theories of stresses and XECs determined by HTXRD and briefly discusses the experimental results.


2014 ◽  
Vol 30 (3) ◽  
pp. 340-356 ◽  
Author(s):  
Giovanni Esteves ◽  
Chris M. Fancher ◽  
Jacob L. Jones

Abstract


2020 ◽  
Vol 104 (3) ◽  
pp. 1424-1435
Author(s):  
Michael W. Knauf ◽  
Craig P. Przybyla ◽  
Paul A. Shade ◽  
Jun‐Sang Park ◽  
Andrew J. Ritchey ◽  
...  

2000 ◽  
Vol 611 ◽  
Author(s):  
G. Lucadamo ◽  
C. Lavoie ◽  
C. Cabral ◽  
R. A. Carruthers ◽  
J.M.E. Harper

ABSTRACTThe biaxial stress in Co thin-films has been investigated in situ by measuring changes in substrate curvature that occurred during deposition and annealing.Films of Co, 35 to 500 nm in thickness, were deposited by UHV magnetron sputtering at room temperature on Si (100) and poly-Si substrates.Results show that during Co deposition the bending force increased linearly with film thickness; a signature of constant stress.In addition, the stress evolution during silicide formation was measured under constant heating rate conditions from room temperature up to 700°C. The stress-temperature curve was correlated with Co2Si, CoSi, and CoSi2 phase formation using in situ synchrotron X-ray diffraction measurements.The room temperature stress for the CoSi2 phase was found to be ∼0.8 GPa (tensile) in the films deposited on Si (100) and ∼1 GPa (tensile) on the films deposited on poly-Si.The higher tensile stress in the poly-Si sample could be a result of Si grain growth during annealing.


2006 ◽  
Vol 524-525 ◽  
pp. 905-910 ◽  
Author(s):  
B. Malard ◽  
Thilo Pirling ◽  
Karim Inal ◽  
Etienne Patoor ◽  
Sophie Berveiller

This paper focuses on the study of the superelastic behavior associated to the stress induced martensite transformation in a Cu-12.5%Al-0.5%Be [wt. %] shape memory alloy. Neutron diffraction was used to track the evolution of stress in the (β1) austenitic phase during the onset of the stress-induced martensite phase change. A thin flat and a cylindrical specimen was analyzed, allowing us firstly to evaluate the stress evolution in the austenite phase during martensitic transformation with laboratory X-ray and neutron diffraction and secondly to compare differences between methods (sin2ψ, principal stress) for in-situ neutron diffraction experiments.


Sign in / Sign up

Export Citation Format

Share Document