In-Situ Growth and Polygonization of Epitaxial Passive Oxide Films on Nanoparticles of Iron

2001 ◽  
Vol 7 (S2) ◽  
pp. 1234-1235
Author(s):  
K.K. Fung ◽  
X.X. Zhang ◽  
Y.S. Kwok ◽  
Boxiong Qin

Over the years, the study of the oxidation of nanoparticles of iron by transmission electron microscopy (TEM), Mossbauer spectroscopy and X-ray diffraction has established that nanoparticles of iron have a core-shell morphology in which the iron core is enclosed by shell of polycrystalline shell of ultrasmall γ-Fe2O3 and Fe3O4 crystallites. Recently, passivated nanoparticles of iron prepared by gas condensation of plasma evaporated vapor in Tianjin University exhibit remarkable resistance to further oxidation and corrosion in air and water. We have showed by TEM that these nanoparticles of iron are protected by a 4 nm epitaxial shell of γ-Fe2O3. The epitaxial orientation relationship, established by convergent beam electron diffraction from a nanoparticle, is as follows:The [001] diffraction pattern of the oxide is rotated by 45° about a cubic axis relative to that of iron.

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2014 ◽  
Vol 67 (10) ◽  
pp. 1387 ◽  
Author(s):  
Shi-Qiang Bai ◽  
Lu Jiang ◽  
Sheng-Li Huang ◽  
Ming Lin ◽  
Shuang-Yuan Zhang ◽  
...  

Composite Pd/Fe3O4 (1) was designed and synthesised by immobilization of tridentate pincer ligands with triethoxysilane groups on Fe3O4 nanoparticles, PdII complexation, and in-situ reduction process. The composite was characterised by transmission electron microscopy, scanning electron microscopy energy-dispersive X-ray spectroscopy, powder X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The composite featured Pd nanoparticles of ~2–4 nm, exhibited good thermal stability and hydrophilic property as well as excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol in water.


2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2006 ◽  
Vol 21 (12) ◽  
pp. 3047-3057 ◽  
Author(s):  
A. Vlad ◽  
A. Stierle ◽  
N. Kasper ◽  
H. Dosch ◽  
M. Rühle

The oxidation in air of NiAl(110) was investigated in the temperature range from 870 °C–1200 °C by in situ x-ray diffraction and transmission electron microscopy. Oxidation at 870 °C and 1 bar oxygen leads to the formation of an epitaxial layer of γ-alumina showing an R30° orientation relationship with respect to the underlying substrate. At oxidation temperatures between 950 °C and 1025 °C, we observed a coexistence of epitaxial γ- and polycrystalline δ-Al2O3. The α-Al2O3 starts to form at 1025 °C and the complete transformation of metastable phases to the stable α-alumina phase takes place at 1100 °C. The fcc-hcp martensitic-like transformation of the initial γ-Al2O3 to epitaxial α-Al2O3 was observed. X-ray diffraction and cross-section transmission electron microscopy proved the existence of a continuous epitaxial α-Al2O3 layer between the substrate and the polycrystalline oxide scale, having a thickness of about 150 nm. The relative orientation relationship between the epitaxial alumina and the underlying substrate was found to be NiAl(110) || α-Al2O3 (0001) and [110] NiAl || [1120].


Sign in / Sign up

Export Citation Format

Share Document