In Situ EXAFS Characterization of Nanoparticulate Catalysts

MRS Bulletin ◽  
2007 ◽  
Vol 32 (12) ◽  
pp. 1038-1043 ◽  
Author(s):  
John Evans ◽  
Anna Puig-Molina ◽  
Moniek Tromp

AbstractX-ray absorption fine structure (XAFS) spectroscopy probes the structure and electronic properties of metal centers. Because it can be applied to noncrystalline materials, it is a key technique for probing nanoparticulate materials, such as colloidal and heterogeneous metal catalysts. The high brilliance of modern synchrotron radiation x-ray sources facilitates in situ studies, which provide direct structure–function relationships with both spatial and time resolution; this is especially effective when applied in combination with complementary techniques such as x-ray diffraction, mass spectrometry, and optical or vibrational spectroscopies. Tracking the particle formation of platinum-group metal catalysts, their behavior under reaction conditions, and the distribution of sites within a catalyst bed shows that this approach is essential for understanding the chemistry of these nanoparticles. Rather than behave as monolithic entities, nanoparticulate catalysts undergo rapid structural transformations induced by the gas environment and reaction conditions, and their lifetimes as catalysts depend on the reversibility of these changes.

2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1643 ◽  
Author(s):  
Oleg A. Usoltsev ◽  
Anna Yu. Pnevskaya ◽  
Elizaveta G. Kamyshova ◽  
Andrei A. Tereshchenko ◽  
Alina A. Skorynina ◽  
...  

Adsorption of ethylene on palladium, a key step in various catalytic reactions, may result in a variety of surface-adsorbed species and formation of palladium carbides, especially under industrially relevant pressures and temperatures. Therefore, the application of both surface and bulk sensitive techniques under reaction conditions is important for a comprehensive understanding of ethylene interaction with Pd-catalyst. In this work, we apply in situ X-ray absorption spectroscopy, X-ray diffraction and infrared spectroscopy to follow the evolution of the bulk and surface structure of an industrial catalysts consisting of 2.6 nm supported palladium nanoparticles upon exposure to ethylene under atmospheric pressure at 50 °C. Experimental results were complemented by ab initio simulations of atomic structure, X-ray absorption spectra and vibrational spectra. The adsorbed ethylene was shown to dehydrogenate to C2H3, C2H2 and C2H species, and to finally decompose to palladium carbide. Thus, this study reveals the evolution pathway of ethylene on industrial Pd-catalyst under atmospheric pressure at moderate temperatures, and provides a conceptual framework for the experimental and theoretical investigation of palladium-based systems, in which both surface and bulk structures exhibit a dynamic nature under reaction conditions.


2014 ◽  
Vol 69 (11-12) ◽  
pp. 1248-1252 ◽  
Author(s):  
Mareike C. Jahnke ◽  
Christian Schulte to Brinke ◽  
F. Ekkehardt Hahn

Abstract The 5,5′-bibenzimidazolium dibromide salts 2 and 3 have been prepared by fourfold N-alkylation of 5,5′-bibenzimidazole (2: R=Pr; 3: R=Bu). The diazolium salts were treated with silver oxide, and the in situ-formed silver complexes were subsequently reacted with [AuCl(SMe2)] to give the dinuclear gold complexes 4 and 5. The molecular structure of complex 5 has been determined by X-ray diffraction showing linearly coordinated gold(I) centers and, most likely due to steric crowding around the metal centers, no aurophilic interactions.


2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 710
Author(s):  
Linmeng Huo ◽  
Tian Wang ◽  
Keng Xuan ◽  
Lei Li ◽  
Yanfeng Pu ◽  
...  

The adsorption and activation of both CO2 and methanol are mainly affected by the distance of the Lewis acid site, Zr4+, and Lewis base, Zr4+/O2−, of the Zr-based catalysts. In this paper, Zr-incorporated SBA-15 (Zr-SBA-15) and Zr-grafted SBA-15 (Zr/SBA-15) catalysts were prepared with different Zr environments, and were analyzed with N2 adsorption–desorption isotherms, X-ray diffraction, UV-vis spectra, and XPS. It was proposed that Zr-SBA-15 catalyst with Si-O-Zr-OH and Zr-O-Si-OH structure exhibited non-adjacent sites between Zr4+ and Zr4+/O2−, while Zr/SBA-15 catalyst with Zr-O-Zr-OH structure showed neighboring sites between Zr4+ and Zr4+/O2−. Furthermore, the Zr/SBA-15 catalyst exhibited good catalytic activity, while no DMC was detected over the Zr-SBA-15 catalyst at the same reaction conditions. For combined in situ infrared and catalytic performance, it was indicated that the methanol and CO2 could be activated to form DMC, only when the Zr4+ and Zr4+/O2− sites existed and were adjacent to each other in the Zr-O-Zr-OH of Zr/SBA-15 catalyst.


2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


2016 ◽  
Vol 72 (11) ◽  
pp. 1526-1531 ◽  
Author(s):  
Farid M. Sroor ◽  
Phil Liebing ◽  
Cristian G. Hrib ◽  
Daniel Gräsing ◽  
Liane Hilfert ◽  
...  

The first metal complexes comprising amidinoguanidinate ligands have been prepared and structurally characterized, namely bis[μ-N,N′,N′′,N′′′-tetraisopropyl-1-(1-butylamidinato)guanidinato-κ3N1,N2:N2]bis[(tetrahydrofuran)lithium], [Li2(C18H37N4)2(C4H8O)2], (2), and [bis(tetrahydrofuran)lithium]-di-μ-chlorido-{(N,N′-dicyclohexyl-1-butylamidinato-κ2N1,N2)[N,N′,N′′,N′′′-tetracyclohexyl-1-(1-butylamidinato)guanidinato-κ2N1,N2]holmate(III)}, [HoLiCl2(C4H8O)2(C17H31N2)(C30H53N4)], (3). The novel lithium amidinoguanidinate precursors Li[nBuC(=NR)(NR)C(NR)2] [1:R= Cy (cyclohexyl),2:R=iPr) were obtained by treatment ofN,N′-diorganocarbodiimides,R—N=C=N—R(R=iPr, Cy), with 0.5 equivalents ofn-butyllithium under well-defined reaction conditions. An X-ray diffraction study of2revealed a ladder-type dimeric structure in the solid state. Reaction of anhydrous holmium(III) chloride within situ-prepared2afforded the unexpected holmium `ate' complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2(3) in 71% yield. An X-ray crystal structure determination of3showed that this complex contains both an amidinate ligand and the new amidinoguanidinate ligand.


Inorganics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 41 ◽  
Author(s):  
Phil Liebing ◽  
Nicole Harmgarth ◽  
Florian Zörner ◽  
Felix Engelhardt ◽  
Liane Hilfert ◽  
...  

Two new main group element carboranylamidinates were synthesized using a bottom-up approach starting from o-carborane, ortho-C2B10H12 (1, = 1,2-dicarba-closo-dodecaborane). The first divalent germanium carboranylamidinate, GeCl[HLCy] (3, [HLCy]− = [o-C2B10H10C(NCy)(NHCy)]−, Cy = cyclohexyl), was synthesized by treatment of GeCl2(dioxane) with 1 equiv. of in situ-prepared Li[HLCy] (2a) in THF and isolated in 47% yield. In a similar manner, the first antimony(III) carboranylamidinate, SbCl2[HLiPr] (4, [HLiPr]− = [o-C2B10H10C(NiPr)(NHiPr)]−), was obtained from a reaction of SbCl3 with 1 equiv. of Li[HLiPr] in THF (56% yield). The title compounds were fully characterized by analytical and spectroscopic methods as well as single-crystal X-ray diffraction. Both compounds 3 and 4 are monomeric species in the solid state, and the molecular geometries are governed by a stereo-active lone pair at the metal centers.


Sign in / Sign up

Export Citation Format

Share Document