Experimental Evidence of Super Densification of Adsorbed Hydrogen by in-situ Small Angle Neutron Scattering (SANS)

2011 ◽  
Vol 1334 ◽  
Author(s):  
Dipendu Saha ◽  
Lilin He ◽  
Cristian I. Contescu ◽  
Nidia C. Gallego ◽  
Yuri B. Melnichenko

ABSTRACTEntrapping hydrogen molecules within the nanopores of solid adsorbents serves as a unique alternative for on-board storing of hydrogen for transportation purposes. The key advantage of the physisorption process for hydrogen storage is the higher density values achieved with the adsorbed gas, compared to that of the compressed phase, translating into higher storage capacities at lower pressures. The necessary condition for effective adsorption is the presence of narrow micropores of < 2 nm in width which provide the most suitable environment of hydrogen adsorption. Despite numerous theoretical calculations or indirect experimental estimations, there has not been a direct experimental measurement of the density of adsorbed hydrogen as a function of pressure and/or pore size. In the present study, we report on the use of in-situ small angle neutron scattering (SANS) to study the phase behavior of hydrogen confined in narrow micropores. We provide for the first time direct experimental measurements of the effect of pore size and pressure on hydrogen adsorbed on a polyfurfuryl alcohol-derived activated carbon (PFAC), at room temperature and pressures up to 207 bar. SANS studies were carried out at the General-Purpose Small-Angle Neutron Scattering spectrometer of the High Flux Isotope Reactor at Oak Ridge National Laboratory. The measurements covered the Q-range from 0.01 to 0.8 Å-1, covering the pores in the range of 9 to 34 Å of the PFAC material. Initial results suggest that the density of adsorbed hydrogen is higher than the density of bulk hydrogen gas and increases with decreasing pore size.

2012 ◽  
Vol 1440 ◽  
Author(s):  
Hongxin Zhang ◽  
Lilin He ◽  
Yuri B. Melnichenko ◽  
Cristian I. Contescu ◽  
Nidia C. Gallego

ABSTRACTWe report on the use of in-situ small angle neutron scattering (SANS) technique to study the phase behavior of hydrogen confined in narrow pores of ultramicroporous carbon (UMC) with a very large surface area (2630 m2/g) and pore volume (1.3 cm3/g). The effect of pore size and pressure on hydrogen adsorbed on UMC at room temperature and pressures up to ∼200 bar were investigated. In a previous experiment, we have measured the density of adsorbed H2 gas in the nanopores and mesopores of polyfurfuryl alcohol-derived activated carbon (PFAC) by SANS technique. Here, a comparative SANS study between the UMC and PFAC was conducted in order to further investigate the densification of H2 as a function of pore size and pressure. Initial results suggest that the density of confined H2 in both UMC and PFAC is considerably higher than that of the bulk hydrogen gas. The density is systematically higher in the narrow pores and decreases with increasing pore size. These results clearly demonstrate the advantage of adsorptive storage over compressed gas storage and emphasize the greater efficiency of micropores over mesopores in the adsorption process, which can be used to guide the development of new carbon adsorbents tailored for maximum H2 storage capacities at near-ambient temperatures.


Carbon ◽  
2013 ◽  
Vol 57 ◽  
pp. 460-469 ◽  
Author(s):  
Félix Balima ◽  
Vittoria Pischedda ◽  
Sylvie Le Floch ◽  
Annie Brûlet ◽  
Peter Lindner ◽  
...  

2018 ◽  
Vol 51 (2) ◽  
pp. 242-248 ◽  
Author(s):  
William T. Heller ◽  
Matthew Cuneo ◽  
Lisa Debeer-Schmitt ◽  
Changwoo Do ◽  
Lilin He ◽  
...  

Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. A description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.


Langmuir ◽  
2019 ◽  
Vol 35 (10) ◽  
pp. 3822-3831 ◽  
Author(s):  
Ignacio Martín-Fabiani ◽  
David K. Makepeace ◽  
Philip G. Richardson ◽  
Jennifer Lesage de la Haye ◽  
Diego Alba Venero ◽  
...  

1997 ◽  
Vol 30 (5) ◽  
pp. 787-791 ◽  
Author(s):  
I. N. Serdyuk ◽  
G. Zaccaï

The triple isotopic substitution (TIS) method is based on the analysis of a scattering curve which is the difference between the scattering of two solutions containing appropriately deuterium-labelled particles. A necessary condition for the application of the method is that the two solutions are identical in all respects except for the extent of the deuterium label. Such an experimental scheme has allowed a number of unique physical experiments to be performed, the main ones being: (1) elimination of the contribution of the interparticle interference; (2) addition of both small- and large-sized foreign particles to those studied without distortions of the structural data; (3) highlighting of individual (quite small) regions in the molecules; (4) suppression of the dimerization contribution to the scattering curve. The application of this method is of special interest for studying the mutual three-dimensional disposition of individual small regions of molecules (3D mapping) and for investigating the geometrical properties of the surfaces of globular proteins. It is evident that TIS has a wide range of experimental possibilities, demonstrating that small-angle neutron scattering is one of the most informative structural methods for low resolution.


Sign in / Sign up

Export Citation Format

Share Document