scholarly journals Nonlinear Mechanical Properties of Graphene Nanoribbons

2011 ◽  
Vol 1284 ◽  
Author(s):  
Qiang Lu ◽  
Rui Huang

ABSTRACTBased on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). The results of atomistic simulations are interpreted using a theoretical model of thermodynamics, which enables determination of the nonlinear functions for the strain-dependent edge energy and the hydrogen adsorption energy, for both zigzag and armchair edges. Due to the edge effects, the initial Young’s modulus of graphene nanoribbons under infinitesimal strain varies with the edge chirality and the ribbon width. Furthermore, it is found that the nominal strain to fracture is considerably lower for armchair graphene nanoribbons than for zigzag ribbons. Two distinct fracture mechanisms are identified, with homogeneous nucleation for zigzag ribbons and edge-controlled heterogeneous nucleation for armchair ribbons.

2020 ◽  
Vol 88 (1) ◽  
Author(s):  
Enlai Gao ◽  
Xiangzheng Jia ◽  
Langquan Shui ◽  
Ze Liu

Abstract Multilayer graphene exhibits strong mechanical anisotropy in the nonlinear elastic regime, and tuning this mechanical anisotropy without damaging the graphene is a tough challenge. In this work, we propose an efficient strategy to tune the mechanical anisotropy of multilayer graphene via interlayer twist. The orientation-dependent strain–stress curve of monolayer graphene is described in analytical form, which is further generalized for predicting the mechanical anisotropy of twisted multilayer graphene by introducing a twist-induced “phase shift.” These predictions are supported by atomistic simulations. It is found that the strong nonlinear mechanical anisotropy of multilayer graphene can be effectively tuned and even eliminated via the twist-induced phase shift. These findings are finally generalized for other layered crystals.


2019 ◽  
Vol 7 (21) ◽  
pp. 6241-6245 ◽  
Author(s):  
Wei-Wei Yan ◽  
Xiao-Fei Li ◽  
Xiang-Hua Zhang ◽  
Xinrui Cao ◽  
Mingsen Deng

Boron adsorption induces a heavily localized state right at the Fermi level only in the family of W = 3p + 1 and thus spin-splitting occurs spontaneously.


Author(s):  
Penghui Ji ◽  
Oliver MacLean ◽  
Gianluca Galeotti ◽  
Dominik Dettmann ◽  
Giulia Berti ◽  
...  

2021 ◽  
Vol 769 ◽  
pp. 138387
Author(s):  
Gesiel G. Silva ◽  
Wiliam F. da Cunha ◽  
Marcelo L. Pereira Júnior ◽  
Luiz F. Roncaratti ◽  
Luiz A. Ribeiro

Sign in / Sign up

Export Citation Format

Share Document