Family-dependent magnetism in atomic boron adsorbed armchair graphene nanoribbons

2019 ◽  
Vol 7 (21) ◽  
pp. 6241-6245 ◽  
Author(s):  
Wei-Wei Yan ◽  
Xiao-Fei Li ◽  
Xiang-Hua Zhang ◽  
Xinrui Cao ◽  
Mingsen Deng

Boron adsorption induces a heavily localized state right at the Fermi level only in the family of W = 3p + 1 and thus spin-splitting occurs spontaneously.

ACS Nano ◽  
2017 ◽  
Vol 11 (11) ◽  
pp. 11661-11668 ◽  
Author(s):  
Néstor Merino-Díez ◽  
Aran Garcia-Lekue ◽  
Eduard Carbonell-Sanromà ◽  
Jingcheng Li ◽  
Martina Corso ◽  
...  

2016 ◽  
Vol 94 (2) ◽  
pp. 218-225 ◽  
Author(s):  
M. Khatun ◽  
Z. Kan ◽  
A. Cancio ◽  
C. Nelson

We explore a model of armchair graphene nanoribbons tuned by functionalizing the edge states. Edge modifications are modeled by changing the electronic energy of the edge states in specific periodic patterns. The model can be considered to mimic a controlled doping process with different elements. The band structure, density of states, conductance, and local density of states are calculated, using the tight binding approach, Green’s function methodology, and the Landauer formula. The results show interesting behaviors, which are considerably different from the properties of the perfect nanoribbons. The hybridization of conducting bands with non-conducting bands, which appear perfectly flat in the perfect ribbon, opens up and modifies gaps in conductance near the Fermi level. One particular pattern of edge functionalization causes a strong, symmetric, and systematic band gap change about the Fermi level, modifying the electronic characteristics in the energy dispersion, density of states, local density of states, and conductance.


Author(s):  
Penghui Ji ◽  
Oliver MacLean ◽  
Gianluca Galeotti ◽  
Dominik Dettmann ◽  
Giulia Berti ◽  
...  

2021 ◽  
Vol 769 ◽  
pp. 138387
Author(s):  
Gesiel G. Silva ◽  
Wiliam F. da Cunha ◽  
Marcelo L. Pereira Júnior ◽  
Luiz F. Roncaratti ◽  
Luiz A. Ribeiro

RSC Advances ◽  
2016 ◽  
Vol 6 (28) ◽  
pp. 23974-23980 ◽  
Author(s):  
Min Wang ◽  
Si Xing Song ◽  
Hai Xing Zhao ◽  
Yu Chen Wang

The functional groups on armchair graphene nanoribbons affect the spatial distribution of the wavefunction and influence the electronic and optical properties as well.


Sign in / Sign up

Export Citation Format

Share Document