Localized Surface Plasmon Enhanced Quantum Dot Solar Cells

2012 ◽  
Vol 1391 ◽  
Author(s):  
Jiang Wu ◽  
Scott Mangham ◽  
Rick Eyi ◽  
Seungyong Lee ◽  
Vanga R. Reddy ◽  
...  

ABSTRACTSurface plasmon enhanced InAs/GaAs quantum dot solar cells are reported. Light trapping by metallic nanostructures offers the potential to realize high efficient quantum dot based intermediate band solar cells. Both Au and Ag nanoparticles spherical metal nanoparticles are synthesized by the salt reduction method. The large area coupling of metal nanoparticles and quantum dot solar cell surface is carried out by using 1,3-propanedithiol as linker molecules. The conversion efficiency of the solar cells has been increased from 9.5% to 11.6% after deposition of Au nanoparticles and from 9.5 to 10.9% after incorporating Ag nanoparticles. The conversion efficiency enhancement is mainly as a result of improved photocurrent due to enhanced forward scattering from the plasmonic nanostructures.

2015 ◽  
Vol 29 (Supplement 1) ◽  
pp. 1530008 ◽  
Author(s):  
Elham N. Afshar ◽  
Rasoul Rouhi ◽  
Nima E. Gorji

Briefly, we reviewed the latest progress in energy conversion efficiency and degradation rate of the quantum dot (QD) solar cells. QDs are zero dimension nanoparticles with tunable size and accordingly tunable band gap. The maximum performance of the most advanced QD solar cells was reported to be around 10%. Nevertheless, majority of research groups do not investigate the stability of such devices. QDs are cheaper replacements for silicon or other thin film materials with a great potential to significantly increase the photon conversion efficiency via two ways: (i) creating multiple excitons by absorbing a single hot photon, and (ii) formation of intermediate bands (IBs) in the band gap of the background semiconductor that enables the absorption of low energy photons (two-step absorption of sub-band gap photons). Apart from low conversion efficiency, QD solar cells also suffer from instability under real operation and stress conditions. Strain, dislocations and variation in size of the dots (under pressure of the other layers) are the main degradation resources. While some new materials (i.e. perovskites) showed an acceptable high performance, the QD devices are still inefficient with an almost medium rate of 4% (2010) to 10% (2015).


2015 ◽  
Vol 737 ◽  
pp. 119-122 ◽  
Author(s):  
Tong Yu Wang ◽  
Peng Wang ◽  
He Lin Wang ◽  
Tie Qiang Zhang

This essay employed the "successive ion layer adsorption and reaction (SILAR)"technology to form PbSe/CdSe core/shell.We use the Pbse/CdSe core/shell replaced PbSe nanocrystals and obtained one new quantum dot solar cells of the inorganic.This new solar cells constituted by the metal oxide films retain the photoelectric conversion efficiency of quantum dot solar cells.At the same time,the stability of the new solar cells is tremendously improved with the oxidation resistance of inorganic oxide.Finally,when Jsc=25.2mA/cm2and Voc=0.36V ,we can conclude the conversion efficiency of the solar cell can be evaluated as 3.929%.


2015 ◽  
Vol 51 (9) ◽  
pp. 1732-1735 ◽  
Author(s):  
Vicente M. Blas-Ferrando ◽  
Javier Ortiz ◽  
Victoria González-Pedro ◽  
Rafael S. Sánchez ◽  
Iván Mora-Seró ◽  
...  

The power conversion efficiency of CdSe and CdS quantum dot sensitized solar cells is enhanced up to 45% for CdSe and 104% for CdS by passivation with an asymmetrically disulfide substituted phthalocyanine.


2016 ◽  
Vol 138 (12) ◽  
pp. 4201-4209 ◽  
Author(s):  
Jun Du ◽  
Zhonglin Du ◽  
Jin-Song Hu ◽  
Zhenxiao Pan ◽  
Qing Shen ◽  
...  

2018 ◽  
Vol 30 (11) ◽  
pp. 1705746 ◽  
Author(s):  
Wei Wang ◽  
Wenliang Feng ◽  
Jun Du ◽  
Weinan Xue ◽  
Linlin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document