Light Trapping in Hydrogenated Amorphous and Nanocrystalline Silicon Based Thin-Film Solar Cells With Ag/ZnO Back Reflectors

2012 ◽  
Vol 1391 ◽  
Author(s):  
Baojie Yan ◽  
Guozhen Yue ◽  
Laura Sivec ◽  
Jessica Owens-Mawson ◽  
Jeffrey Yang ◽  
...  

ABSTRACTWe report on our systematic study of light trapping effects using Ag/ZnO BRs for nc-Si:H solar cells. The texture of Ag and ZnO was optimized to achieve enhancement in photocurrent. The light trapping effect on photocurrent enhancement in solar cells was carefully investigated. Comparing to single-junction solar cells deposited on flat stainless steel substrates, the gain in Jsc by using Ag/ZnO BRs is 57% for nc-Si:H solar cells. This gain in Jsc is much higher than what has been achieved by advanced light trapping approaches using photonic structures or plasmonic light trapping reported in the literature. We achieved a Jsc of 29-30 mA/cm2 in a nc-Si:H single-junction solar cell with an intrinsic layer thickness of ∼2.5 μm. We compared the quantum efficiency of single-junction cells to the classical limit of fully randomized scattering and found that there is a 6-7 mA/cm2 difference between the measured Jsc and the classical limit, in which 3-4 mA/cm2 is in the long wavelength region. However, by taking into consideration the losses from reflection of the top contact, absorption in the doped layers, and imperfect reflection in the BRs, the difference disappears. This implies we have reached the practical limit if the scattering from randomly textured substrates is the only mechanism of light trapping. Therefore, we believe future research for improving photocurrent should be directed toward reducing (i) reflection loss by the top contact, the absorption in ZnO and at the Ag/ZnO interface, and (ii) p layer absorption.

2009 ◽  
Vol 1153 ◽  
Author(s):  
Guozhen Yue ◽  
Laura Sivec ◽  
Baojie Yan ◽  
Jeff Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on nc-Si:H single-junction and a-Si:H/nc-Si:H/nc-Si:H triple-junction cells made by a modified very-high-frequency (MVHF) technique at deposition rates of 10-15 Å/s. First, we studied the effect of substrate texture on the nc-Si:H single-junction solar cell performance. We found that nc-Si:H single-junction cells made on bare stainless steel (SS) have a good fill factor (FF) of ˜0.73, while it decreased to ˜0.65 when the cells were deposited on textured Ag/ZnO back reflectors. The open-circuit voltage (Voc) also decreased. We used dark current-voltage (J-V), Raman, and X-ray diffraction (XRD) measurements to characterize the material properties. The dark J-V measurement showed that the reverse saturated current was increased by a factor of ˜30 when a textured Ag/ZnO back reflector was used. Raman results revealed that the nc-Si:H intrinsic layers in the two solar cells have similar crystallinity. However, they showed a different crystallographic orientation as indicated in XRD patterns. The material grown on Ag/ZnO has more random orientation than that on SS. These experimental results suggested that the deterioration of FF in nc-Si:H solar cells on textured Ag/ZnO was caused by poor nc-Si:H quality. Based on this study, we have improved our Ag/ZnO back reflector and the quality of nc-Si:H component cells and achieved an initial and stable active-area efficiencies of 13.4% and 12.1%, respectively, in an a-Si:H/nc-Si:H/nc-Si:H triple-junction cell.


2011 ◽  
Vol 109 (8) ◽  
pp. 084519 ◽  
Author(s):  
K. R. Catchpole ◽  
S. Mokkapati ◽  
F. J. Beck

2009 ◽  
Vol 1153 ◽  
Author(s):  
Jeffrey Yang ◽  
Baojie Yan ◽  
Guozhen Yue ◽  
Subhendu Guha

AbstractLight trapping effect in hydrogenated amorphous silicon-germanium alloy (a-SiGe:H) and nano-crystalline silicon (nc-Si:H) thin film solar cells deposited on stainless steel substrates with various back reflectors is reviewed. Structural and optical properties of the Ag/ZnO back reflectors are systematically characterized and correlated to solar cell performance, especially the enhancement in photocurrent. The light trapping method used in our current production lines employing an a-Si:H/a-SiGe:H/a-SiGe:H triple-junction structure consists of a bi-layer of Al/ZnO back reflector with relatively thin Al and ZnO layers. Such Al/ZnO back reflectors enhance the short-circuit current density, Jsc, by ˜20% compared to bare stainless steel. In the laboratory, we use Ag/ZnO back reflector for higher Jsc and efficiency. The gain in Jsc is about ˜30% for an a-SiGe:H single-junction cell used in the bottom cell of a multi-junction structure. In recent years, we have also worked on the optimization of Ag/ZnO back reflectors for nano-crystalline silicon (nc-Si:H) solar cells. We have carried out a systematic study on the effect of texture for Ag and ZnO. We found that for a thin ZnO layer, a textured Ag layer is necessary to increase Jsc, even though the parasitic loss is higher at the Ag and ZnO interface due to the textured Ag. However, a flat Ag can be used for a thick ZnO to reduce the parasitic loss, while the light scattering is provided by the textured ZnO. The gain in Jsc for nc-Si:H solar cells on Ag/ZnO back reflectors is in the range of ˜60-75% compared to cells deposited on bare stainless steel, which is much larger than the enhancement observed for a-SiGe:H cells. The highest total current density achieved in an a-Si:H/a-SiGe:H/nc-Si:H triple-junction structure on Ag/ZnO back reflector is 28.6 mA/cm2, while it is 26.9 mA/cm2 for a high efficiency a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cell.


2016 ◽  
Vol 27 (5) ◽  
pp. 055403 ◽  
Author(s):  
Kyungyeon Ha ◽  
Eunseok Jang ◽  
Segeun Jang ◽  
Jong-Kwon Lee ◽  
Min Seok Jang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Pei-Ling Chen ◽  
Po-Wei Chen ◽  
Min-Wen Hsiao ◽  
Cheng-Hang Hsu ◽  
Chuang-Chuang Tsai

The enhancement of optical absorption of silicon thin-film solar cells by the p- and n-typeμc-SiOx:H as doped and functional layers was presented. The effects of deposition conditions and oxygen content on optical, electrical, and structural properties ofμc-SiOx:H films were also discussed. Regarding the dopedμc-SiOx:H films, the wide optical band gap (E04) of 2.33 eV while maintaining a high conductivity of 0.2 S/cm could be obtained with oxygen incorporation of 20 at.%. Compared to the conventionalμc-Si:H(p) as window layer inμc-Si:H single-junction solar cells, the application ofμc-SiOx:H(p) increased theVOCand led to a significant enhancement in the short-wavelength spectral response. Meanwhile, the employment ofμc-SiOx:H(n) instead of conventional ITO as back reflecting layer (BRL) enhanced the external quantum efficiency (EQE) ofμc-Si:H single-junction cell in the long-wavelength region, leading to a relative efficiency gain of 10%. Compared to the reference cell, the optimized a-Si:H/μc-Si:H tandem cell by applying p- and n-typeμc-SiOx:H films achieved aVOCof 1.37 V,JSCof 10.55 mA/cm2, FF of 73.67%, and efficiency of 10.51%, which was a relative enhancement of 16%.


2013 ◽  
Vol 114 (6) ◽  
pp. 063103 ◽  
Author(s):  
A. Micco ◽  
A. Ricciardi ◽  
M. Pisco ◽  
V. La Ferrara ◽  
L. V. Mercaldo ◽  
...  

2007 ◽  
Vol 22 (5) ◽  
pp. 1128-1137 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Gautam Ganguly ◽  
Jeffrey Yang ◽  
Subhendu Guha

Light-induced metastability in hydrogenated nanocrystalline silicon (nc-Si:H) single-junction solar cells was studied systematically. First, we observed no light-induced degradation when the photon energy was lower than the band gap of the amorphous phase; degradation occurred when the energy was higher than the band gap in the amorphous phase. The light-induced degradation could be annealed away at an elevated temperature. We concluded that the light-induced defect generation occurred mainly in the amorphous phase. Second, forward current injection did not degrade the nc-Si:H cell performance. However, a reverse bias during light soaking enhanced the degradation. Third, the nc-Si:H cells made with an optimized hydrogen dilution profile showed minimal degradation although these cells had a high amorphous volume fraction. This indicated that the amorphous volume fraction was not the only factor determining the degradation. Other factors also played important roles in the nc-Si:H stability.


2012 ◽  
Vol 1426 ◽  
pp. 117-123 ◽  
Author(s):  
Sambit Pattnaik ◽  
Nayan Chakravarty ◽  
Rana Biswas ◽  
D. Slafer ◽  
Vikram Dalal

ABSTRACTLight trapping is essential to harvest long wavelength red and near-infrared photons in thin film silicon solar cells. Traditionally light trapping has been achieved with a randomly roughened Ag/ZnO back reflector, which scatters incoming light uniformly through all angles, and enhances currents and cell efficiencies over a flat back reflector. A new approach using periodically textured photonic-plasmonic arrays has been recently shown to be very promising for harvesting long wavelength photons, through diffraction of light and plasmonic light concentration. Here we investigate the combination of these two approaches of random scattering and plasmonic effects to increase cell performance even further. An array of periodic conical back reflectors was fabricated by nanoimprint lithography and coated with Ag. These back reflectors were systematically annealed to generate different amounts of random texture, at smaller spatial scales, superimposed on a larger scale periodic texture. nc-Si solar cells were grown on flat, periodic photonic-plasmonic substrates, and randomly roughened photonic-plasmonic substrates. There were large improvements (>20%) in the current and light absorption of the photonic-plasmonic substrates relative to flat. The additional random features introduced on the photonic-plasmonic substrates did not improve the current and light absorption further, over a large range of randomization features.


Sign in / Sign up

Export Citation Format

Share Document