Ab Initio Study of the Sub-threshold Electron Transport Properties of Ultra-scaled Amorphous Phase Change Material Germanium Telluride

2014 ◽  
Vol 1697 ◽  
Author(s):  
Jie Liu ◽  
Xu Xu ◽  
M. P. Anantram

ABSTRACTThe sub-threshold electron transport properties of amorphous (a-) germanium telluride (GeTe) phase change material (PCM) ultra-thin films are investigated by using ab initio molecular dynamics, density function theory, and Green’s function simulations. The simulation results reproduce the trends in measured electron transport properties, e.g. current-voltage curve, intra-bandgap donor-like and acceptor-like defect states, and p-type conductivity. The underlying physical mechanism of electron transport in ultra-scaled a-PCM is unraveled. We find that, though the current-voltage curve of the ultra-scaled a-PCM resembles that of the bulk a-PCM, their physical origins are different. Unlike the electron transport in bulk a-PCM, which is governed by the Poole-Frenkel effect, the electron transport in ultra-scaled a-PCM is largely dominated by tunneling transport via intra-bandgap donor-like and acceptor-like defect states.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1290
Author(s):  
Quan Yang ◽  
Li Ma ◽  
Shungen Xiao ◽  
Dongxing Zhang ◽  
Aristide Djoulde ◽  
...  

Determining the metallicity and semiconductivity of a multi-walled carbon nanotube (MWCNT) bundle plays a particularly vital role in its interconnection with the metal electrode of an integrated circuit. In this paper, an effective method is proposed to determine the electrical transport properties of an MWCNT bundle using a current–voltage characteristic curve during its electrical breakdown. We established the reliable electrical nanoscale contact between the MWCNT bundle and metal electrode using a robotic manipulation system under scanning electron microscope (SEM) vacuum conditions. The experimental results show that the current–voltage curve appears as saw-tooth-like current changes including up and down steps, which signify the conductance and breakdown of carbon shells in the MWCNT bundle, respectively. Additionally, the power law nonlinear behavior of the current–voltage curve indicates that the MWCNT bundle is semiconducting. The molecular dynamics simulation explains that the electron transport between the inner carbon shells, between the outermost carbon shells and gold metal electrode and between the outermost carbons shells of two adjacent individual three-walled carbon nanotubes (TWCNTs) is through their radial deformation. Density functional theory (DFT) calculations elucidate the electron transport mechanism between the gold surface and double-wall carbon nanotube (DWCNT) and between the inner and outermost carbon shells of DWCNT using the charge density difference, electrostatic potential and partial density of states.


Sign in / Sign up

Export Citation Format

Share Document