Impact of low dose gamma irradiation on electronic carrier transport in AlGaN/GaN High Electron Mobility Transistors

2015 ◽  
Vol 1792 ◽  
Author(s):  
Anupama Yadav ◽  
Elena Flitsiyan ◽  
Leonid Chernyak ◽  
Fan Ren ◽  
Stephen J. Pearton ◽  
...  

ABSTRACTAlGaN/GaN High Electron Mobility Transistors were exposed to 60Co gamma-irradiation to doses up to 300Gy. The impact of Compton- electron injection (due to gamma-irradiation) is studied through monitoring of minority carrier transport using Electron Beam Induced Current (EBIC) technique. Temperature dependent EBIC measurements were conducted on devices before and after exposure to the irradiation, which provide us with critical information on gamma-irradiation induced defects in the material. As a result of irradiation, minority carrier diffusion length increases significantly, with an accompanying decrease in the activation energy. This is consistent with the longer life time of minority carrier in the material’s valence band as a result of an internal electron injection and subsequent trapping of Compton electrons on neutral levels.

2019 ◽  
Vol 33 (18) ◽  
pp. 1950190
Author(s):  
Hai Li Wang ◽  
Peng Yang ◽  
Kun Xu ◽  
Xiang Yang Duan ◽  
Shu Xiang Sun

In this paper, we investigated the impact of thickness and mole fraction AlInGaN back barrier on the DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) by numerical simulation. The simulations are performed using the hydrodynamic transport model (HD). The simulation results indicated that an inserted AlInGaN back barrier with increasing thickness and mole fraction could effectively confine the electron in the channel, resulting in a significant improvement of the channel current and transconductance. Additionally, the variation of conduction band offset and the increase of total number electron in the channel led to the threshold voltage moving toward a more negative value.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 318 ◽  
Author(s):  
He Guan ◽  
Shaoxi Wang ◽  
Lingli Chen ◽  
Bo Gao ◽  
Ying Wang ◽  
...  

Because of the high electron mobility and electron velocity in the channel, InAs/AlSb high electron mobility transistors (HEMTs) have excellent physical properties, compared with the other traditional III-V semiconductor components, such as ultra-high cut-off frequency, very low power consumption and good noise performance. In this paper, both the structure and working principle of InAs/AlSb HEMTs were studied, the energy band distribution of the InAs/AlSb heterojunction epitaxy was analyzed, and the generation mechanism and scattering mechanism of two-dimensional electron gas (2DEG) in InAs channel were demonstrated, based on the software simulation in detail. In order to discuss the impact of different epitaxial structures on the 2DEG and electron mobility in channel, four kinds of epitaxies with different thickness of InAs channel and AlSb upper-barrier were manufactured. The samples were evaluated with the contact Hall test. It is found the sample with a channel thickness of 15 nm and upper-barrier layer of 17 nm shows a best compromised sheet carrier concentration of 2.56 × 1012 cm−2 and electron mobility of 1.81 × 104 cm2/V·s, and a low sheet resistivity of 135 Ω/□, which we considered to be the optimized thickness of channel layer and upper-barrier layer. This study is a reference to further design InAs/AlSb HEMT, by ensuring a good device performance.


Sign in / Sign up

Export Citation Format

Share Document