Iron Oxide Composite Nanoparticles and Sensing Properties

2005 ◽  
Vol 900 ◽  
Author(s):  
Lingyan Wang ◽  
Xiajing Shi ◽  
Sakienah Mahs ◽  
Jeongku Choi ◽  
Karan Sarup ◽  
...  

ABSTRACTThis paper reports findings of an investigation of the synthesis of monolayer-capped iron oxide and core (iron oxide)-shell (gold) nanocomposite and their assembly towards thin films as sensing materials. Pre-synthesized and size-defined iron oxide nanoparticles were used as seeding materials for the reduction of gold precursors, which was shown to be effective for coating the iron oxide cores with gold shells (Fe oxide@Au). The unique aspect of our synthesis is the formation of Fe oxide@Au core-shell nanoparticles with controllable surface properties. By controlling the reaction temperatures and manipulating the capping agent properties and solution compositions, the size, shape, composition, and monodispersity can be tailored. The core-shell nanoparticles were shown to form molecularly-mediated thin film assemblies using molecular mediators. The sensing properties of the nanostructures on piezoelectric devices were examined for the detection of volatile organic compounds. The preliminary results have provided important insights into the design of core-shell nanocomposites as sensing materials.

2021 ◽  
Author(s):  
Marco Sanna Angotzi ◽  
Valentina Mameli ◽  
Claudio Cara ◽  
Davide Peddis ◽  
Huolin L. Xin ◽  
...  

Dissolution phenomena in seed-mediated growth approaches of MnFe2O4-based bi-magnetic core–shell nanoheterostructures with a cobalt ferrite or spinel iron oxide shell.


2013 ◽  
Vol 13 (6) ◽  
pp. 2341-2347 ◽  
Author(s):  
Luca Menichetti ◽  
Leonardo Manzoni ◽  
Luigi Paduano ◽  
A. Flori ◽  
Claudia Kusmic ◽  
...  

2005 ◽  
Vol 876 ◽  
Author(s):  
Jiji Antony ◽  
Joseph Nutting ◽  
Donald R. Baer ◽  
You Qiang

AbstractThe nanoporous materials prepared from iron-iron oxide core-shell nanoparticles are of great interest due to their enhanced possibilities for distribution in the environment, a high rate of chemical reactivity and also the possibility to enhance environmentally friendly reaction paths. However, production of these nanoparticle porous materials by conventional methods is difficult. Therefore, we use a cluster deposition system, which prepares the iron nanoclusters and iron-iron oxide core shell nanoclusters at room temperature. The nanoporous films are synthesized by using the nanoclusters as building blocks. These films are characterized using Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and the Brunauer-Emmett-Teller (BET) method for surface area determination.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 6164-6175 ◽  
Author(s):  
Elena Navarro-Palomares ◽  
Paula González-Saiz ◽  
Carlos Renero-Lecuna ◽  
Rosa Martín-Rodríguez ◽  
Fernando Aguado ◽  
...  

Core–shell nanoparticles provide two fold functionality in nano medicine: reduction of nanotoxicity and improving as a tool for imaging and therapy.


2019 ◽  
Vol 289 ◽  
pp. 114-123 ◽  
Author(s):  
Yan Gong ◽  
Xiaofeng Wu ◽  
Xinyuan Zhou ◽  
Xiaofei Li ◽  
Ning Han ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1107-1120
Author(s):  
Karina Almeida Barcelos ◽  
Marli Luiza Tebaldi ◽  
Eryvaldo Socrates Tabosa do Egito ◽  
Nádia Miriceia Leão ◽  
Daniel Cristian Ferreira Soares

Sign in / Sign up

Export Citation Format

Share Document