Structural and Morphological Characterization of Nanostructured Cobalt Ferrite Thin Films by Pulsed Laser Deposition

2006 ◽  
Vol 962 ◽  
Author(s):  
K. Mohan Kant ◽  
M.S. Ramachandra Rao

ABSTRACTCobalt ferrite (CoFe2O4) thin films were deposited on quartz and single crystalline MgO(001) substrates using pulsed laser deposition (PLD) technique. The orientation of the as-deposited films were investigated as a function of substrate temperature (TS) in the range 200°C – 750°C. Films grown on MgO at higher substrate temperature were found to be (001) oriented while the films grown at lower substrate temperature were polycrystalline in nature. Magnetic measurements reveal that films deposited at lower substrate temperature had lower magnetic moment compared to that of films grown with higher substrate temperature, indicating the correlation between magnetic order and crystallinity. This is attributed to the presence of ordered magnetic domains in the oriented films even though the microstructure remains the same.

1999 ◽  
Vol 38 (Part 1, No. 5A) ◽  
pp. 2710-2716 ◽  
Author(s):  
Frederick Ojo Adurodija ◽  
Hirokazu Izumi ◽  
Tsuguo Ishihara ◽  
Hideki Yoshioka ◽  
Hiroshi Matsui ◽  
...  

1994 ◽  
Vol 361 ◽  
Author(s):  
William Jo ◽  
T.W. Noh

ABSTRACTUsing pulsed laser deposition, Bi4Ti3O12 thin films were grown on (0001) and (1102) surfaces of Al2O3. Substrate temperature from 700 to 800 °C and oxygen pressure from 50 to 1000 mtorr were varied, and their effects on Bi4Ti3O12 film growth behavior was investigated. Only for a narrow range of deposition parameters, can highly oriented Bi4Ti3O12(104) films be grown on Al2O3(0001). Further, epitaxial BTO(004) films can be grown on Al2O3(1102). The growth behavior of preferential BTO film orientations can be explained in terms of atomic arrangements in the Bi4Ti3O12 and the Al2O3 planes.


1999 ◽  
Vol 8 (2-5) ◽  
pp. 463-467 ◽  
Author(s):  
Tsuyoshi Yoshitake ◽  
Takashi Nishiyama ◽  
Hajime Aoki ◽  
Koji Suizu ◽  
Koji Takahashi ◽  
...  

2008 ◽  
Vol 8 (8) ◽  
pp. 4135-4140 ◽  
Author(s):  
Lakshmikanta Aditya ◽  
A. Srivastava ◽  
S. K. Sahoo ◽  
P. Das ◽  
C. Mukherjee ◽  
...  

Cobalt ferrite thin films have been deposited on fused quartz substrates by pulsed laser deposition at various substrate temperatures, TS (25 °C, 300 °C, 550 °C and 750 °C). Single phase, nanocrystalline, spinel cobalt ferrite formation is confirmed by X-ray diffraction (XRD) for TS ≥ 300 °C. Conventional XRD studies reveal strong (111) texturing in the as deposited films with TS ≥ 550 °C. Bulk texture measurements using X-ray orientation distribution function confirmed (111) preferred orientation in the films with TS ≥ 550 °C. Grain size (13–16 nm for TS ≥ 300 °C) estimation using grazing incidence X-ray line broadening analysis shows insignificant grain growth with increasing TS, which is in good agreement with grain size data obtained from transmission electron microscopy.


2007 ◽  
Vol 14 (02) ◽  
pp. 283-291 ◽  
Author(s):  
YAFAN ZHAO ◽  
CHUANZHONG CHEN ◽  
MINGDA SONG ◽  
JIAN LIU

Pulsed laser deposition (PLD), which is a novel technique in producing thin films in the recent years, shows unique advantages for the deposition of bioactive films. Research states of the technical parameters of the pulsed laser deposited bioactive films, including substrate temperature, atmosphere pressure, energy density, wavelength, post-annealing, target, deposition rate, and thickness of the films, are systematically reviewed. Processing-microstructure-property relationships of bioactive films by pulsed laser deposition are discussed. The application prospect is pointed as well.


Sign in / Sign up

Export Citation Format

Share Document