In-Situ Neutron Diffraction Study of the Behavior of AL6XN Stainless Steel Under Biaxial Loading

2007 ◽  
Vol 1027 ◽  
Author(s):  
Michael Gharghouri ◽  
Tito Marin ◽  
Ronald B Rogge ◽  
Paul R Dawson

AbstractIn–situ neutron diffraction has been used to measure lattice strains parallel to two principal stress directions in biaxially-loaded AL6XN stainless steel. A new fixture was developed for loading thin-walled tubular specimens through combinations of internal pressure and axial loading. Under these conditions, the principal directions (σzz and σθθ in a cylindrical r, θ, z coordinate system) remain constant with respect to the initial crystallographic texture regardless of the level of biaxiality, a distinct advantage for diffraction experiments over the traditional tension/torsion tests for which this condition does not hold. Specimens were first pressurized to the level required to obtain a chosen value of σθθ. The axial load was then increased to reach the yield surface at different σθθ/σzz ratios, ranging from uniaxial to balanced biaxial loading (0, 0.4, 0.7, 1 according to Tresca). The {200}, {220}, {222}, and {311} reflections were measured in the axial and hoop directions as a function of axial load. A sequence of axial loading/unloading episodes was applied for different levels of plastic deformation. Under uniaxial tension, the {200} reflection showed the highest axial strains, followed by the {311}, and {220}/{222} reflections. With increasing internal pressure (biaxiality), the axial lattice strains corresponding to a given axial stress tended to decrease, and the responses of the various reflections tended to merge.

2006 ◽  
Vol 524-525 ◽  
pp. 917-922 ◽  
Author(s):  
Ru Lin Peng ◽  
Yan Dong Wang ◽  
Guo Cai Chai ◽  
Nan Jia ◽  
Sten Johansson ◽  
...  

Microstresses due to intergranular and inter-phase interactions in an austenitic-ferritic super duplex steel (SAF 2507) under uniaxial compressive deformation have been studied by in-situ neutron diffraction experiments. Lattice strains of several hkl planes of austenite respective ferrite were mapped as a function of sample direction at a number of load levels during loading into the plastic regime and unloading. The analysis of the experimental results has shown that during loading both grain-orientation-dependent and inter-phase stresses were generated under plastic deformation that was inhomogeneous at the microstructural level. Residual stresses depending on the grain-orientation and phase have been found after unloading. The results also indicate stronger intergranular interactions among the studied hkl planes of austenite than those of ferrite.


Author(s):  
Dong-Feng Li ◽  
Noel P. O’Dowd ◽  
Catrin M. Davies ◽  
Shu-Yan Zhang

In this study, the deformation behavior of an austenitic stainless steel is investigated at the microscale by means of in-situ neutron diffraction (ND) measurements in conjunction with finite-element (FE) simulations. Results are presented in terms of (elastic) lattice strains for selected grain (crystallite) families. The FE model is based on a crystallographic (slip system based) representation of the deformation at the microscale. The present study indicates that combined in-situ ND measurement and micromechanical modelling provides an enhanced understanding of the mechanical response at the microscale in engineering steels.


2017 ◽  
Vol 905 ◽  
pp. 74-80
Author(s):  
David Gloaguen ◽  
Baptiste Girault ◽  
Jamal Fajoui ◽  
Vincent Klosek ◽  
Marie José Moya

A theoretical and experimental study was carry out to investigate deformation mechanisms in a textured titanium alloy. In situ neutron diffraction measurements were performed to analyze different {hk.l} family planes ({10.0}, {10.1}, {11.0} and {00.2}) and determine the corresponding internal strain pole figures. This method was applied to a pure titanium (a-Ti) submitted to a uniaxial tensile load up to 2 %. The experimental data was then used to validate the EPSC model in order to predict the distribution of lattice strains determined by neutron diffraction for various diffraction vector directions. This comparison reveals that the model results were in good agreement with the experimental data and the simulations reproduced the lattice strain development observed on the strain pole figures determined by neutron diffraction.


2012 ◽  
Vol 706-709 ◽  
pp. 1737-1742 ◽  
Author(s):  
D.J. Goossens ◽  
R.E. Whitfield ◽  
A.J. Studer

The phase evolution during the sintering of metal injection moulded stainless steel, 316Land 17-4PH, has been observed using in situ neutron diffraction and Rietveld analysis. The formationof the ferrite phase in the final product is associated with the production of -ferrite at high temperatures.Coexistence of phases at high temperature is thought to allow the segregation of alloyingelements, stabilising the ferrite to lower temperature. To prevent ferrite in the final products the sinteringmust occur at a lower temperature than that at which -ferrite is formed. An alternative regimeis proposed in which the temperature would be cycled around the formation temperature of -ferrite.


2004 ◽  
Vol 840 ◽  
Author(s):  
Kaixiang Tao ◽  
James J. Wall ◽  
Donald W. Brown ◽  
Hongqi Li ◽  
Sven C. Vogel ◽  
...  

ABSTRACTIn-situ, time-of-flight neutron diffraction was performed to investigate the martensitic phase transformation during quasi-static uniaxial compression testing of 304L stainless steel at 300K (room temperature) and 203K. In-situ neutron diffraction study enabled the bulk measurement of intensity evolution for each hkl atomic plane during the austenite (fcc) to martensite (hcp and bcc) phase transformation. The neutron diffraction patterns show that the martensite phases started to develop at about 2.5% applied strain (600 MPa applied stress) at 203K. However, at 300K, the martensite formation was not observed throughout the test. Furthermore, from changes in the relative intensities of individual hkl atomic planes, the selective phase transformation can be well understood and the grain orientation relationship between the austenite and newly-forming martensite phases can be determined. The results show that the fcc grain families with {111} and {200} plane normals parallel to the loading axis are favored for the “fcc to hcp” and “fcc to bcc” transformations, respectively.


Sign in / Sign up

Export Citation Format

Share Document