atomic plane
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Shufen Chu ◽  
Pan Liu ◽  
Yin Zhang ◽  
Xiaodong Wang ◽  
Shuangxi Song ◽  
...  

Abstract We report atomic-scale observations of grain boundary (GB) dislocation climb in nanostructured Au during in situ straining at room temperature. Climb of a dislocation occurs by stress-induced reconstruction of two atomic columns at the edge of an extra half atomic plane in the dislocation core. Different from the conventional belief of dislocation climb by destruction or construction of a single atomic column at the dislocation core, the new atomic route is demonstrated to be energetically favorable by Monte Carlo simulations. Our in situ observations also reveal GB transformation through dislocation climb, which suggests a means of controlling microstructures and properties of nanostructured metals.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lukas Fricke ◽  
Samuel J. Hile ◽  
Ludwik Kranz ◽  
Yousun Chung ◽  
Yu He ◽  
...  

AbstractDonor spins in silicon provide a promising material platform for large scale quantum computing. Excellent electron spin coherence times of $${T}_{2}^{* }=268$$ T 2 * = 268  μs with fidelities of 99.9% have been demonstrated for isolated phosphorus donors in isotopically pure 28Si, where donors are local-area-implanted in a nanoscale MOS device. Despite robust single qubit gates, realising two-qubit exchange gates using this technique is challenging due to the statistical nature of the dopant implant and placement process. In parallel a precision scanning probe lithography route has been developed to place single donors and donor molecules on one atomic plane of silicon with high accuracy aligned to heavily phosphorus doped silicon in-plane gates. Recent results using this technique have demonstrated a fast (0.8 ns) two-qubit gate with two P donor molecules placed 13 nm apart in natSi. In this paper we demonstrate a single qubit gate with coherent oscillations of the electron spin on a P donor molecule in natSi patterned by scanning tunneling microscope (STM) lithography. The electron spin exhibits excellent coherence properties, with a $${T}_{2}$$ T 2 decoherence time of 298 ± 30 μs, and $${T}_{2}^{* }$$ T 2 * dephasing time of 295 ± 23 ns.


2020 ◽  
Vol 10 (6) ◽  
pp. 2015 ◽  
Author(s):  
Yeojoon Yoon ◽  
Homin Kye ◽  
Woo Seok Yang ◽  
Joon-Wun Kang

Graphene is a single atomic plane of graphite, and it exhibits unique electronic, thermal, and mechanical properties. Exfoliated graphene oxide (GO) contains various hydrophilic functional groups, such as hydroxyl, epoxide, and carboxyl groups, that can modify the hydrophobic characteristics of a membrane surface. Though reduced graphene oxide (rGO) has fewer functional groups than GO, its associated sp2 structures and physical properties can be recovered. A considerable amount of research has focused on the use of GO to obtain a pristine graphene material via reduction processes. In this study, polysulfone (PSf) and polyvinylidene fluoride (PVDF) membranes that were blended with GO and rGO, respectively, were fabricated by using the immersion phase inversion method and an n-methylpyrrolidone (NMP) solvent. Results showed that the graphene nanomaterials, GO and rGO, can change the pore morphology (size and structure) of both PSf and PVDF membranes. The optimum content of both was then investigated, and the highest flux enhancement was observed with the 0.10 wt% GO-blended PSf membrane. The presence of functional groups in GO within prepared PSf and PVDF membranes alters the membrane characteristics to hydrophilic. An antifouling test and rejection efficiency evaluation also showed that the 0.10 wt% membrane provided the best performance.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shunsuke Mori ◽  
Shogo Hatayama ◽  
Yi Shuang ◽  
Daisuke Ando ◽  
Yuji Sutou

AbstractDisplacive transformation is a diffusionless transition through shearing and shuffling of atoms. Diffusionless displacive transition with modifications in physical properties can help manufacture fast semiconducting devices for applications such as data storage and switching. MnTe is known as a polymorphic compound. Here we show that a MnTe semiconductor film exhibits a reversible displacive transformation based on an atomic-plane shuffling mechanism, which results in large electrical and optical contrasts. We found that MnTe polycrystalline films show reversible resistive switching via fast Joule heating and enable nonvolatile memory with lower energy and faster operation compared with conventional phase-change materials showing diffusional amorphous-to-crystalline transition. We also found that the optical reflectance of MnTe films can be reversibly changed by laser heating. The present findings offer new insights into developing low power consumption and fast-operation electronic and photonic phase-change devices.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1442 ◽  
Author(s):  
Hung ◽  
Wu ◽  
Xu ◽  
Wu

This study investigated the feasibility of using bamboo to prepare biomorphic porous silicon carbide (bio-SiC) ceramics through a combination of sol–gel impregnation and carbothermal reduction. The effects of sintering temperature, sintering duration, and sol–gel impregnation cycles on the crystalline phases and microstructure of bio-SiC were investigated. X-ray diffraction patterns revealed that when bamboo charcoal–SiO2 composites (BcSiCs) were sintered at 1700 °C for more than 2 h, the resulting bio-SiC ceramics exhibited significant β-SiC diffraction peaks. In addition, when the composites were sintered at 1700 °C for 2 h, scanning electron microscopy micrographs of the resulting bio-SiC ceramic prepared using a single impregnation cycle showed the presence of SiC crystalline particles and nanowires in the cell wall and cell lumen of the carbon template, respectively. However, bio-SiC prepared using three and five repeated cycles of sol–gel impregnation exhibited a foam-like microstructure compared with that prepared using a single impregnation cycle. Moreover, high-resolution transmission electron microscopy and selected area electron diffraction revealed that the atomic plane of the nanowire of bio-SiC prepared from BcSiCs had a planar distance of 0.25 nm and was perpendicular to the (111) growth direction. Similar results were observed for the bio-SiC ceramics prepared from bamboo–SiO2 composites (BSiCs). Accordingly, bio-SiC ceramics can be directly and successfully prepared from BSiCs, simplifying the manufacturing process of SiC ceramics.


2019 ◽  
Vol 11 (28) ◽  
pp. 25264-25270 ◽  
Author(s):  
Cong Wei ◽  
Wenzhuo Wu ◽  
Hao Li ◽  
Xiangcheng Lin ◽  
Tong Wu ◽  
...  

2019 ◽  
Vol 26 (3) ◽  
pp. 750-755 ◽  
Author(s):  
Hiroo Tajiri ◽  
Hiroshi Yamazaki ◽  
Haruhiko Ohashi ◽  
Shunji Goto ◽  
Osami Sakata ◽  
...  

To supply the growing demand for high photon flux in synchrotron science including surface diffraction, a middle energy-bandwidth monochromator covering the 10−4 to 10−3 range has been adapted by applying an asymmetric diffraction geometry to a cryogenically cooled silicon 111 double-crystal monochromator used as a standard for the undulator source at SPring-8. The asymmetric geometry provides a great advantage with its ability to configure flux gains over a wide energy range by simply changing the asymmetry angle, while the angular divergence of the exit beam remains unchanged. A monolithic design with three faces has been employed, having one symmetrically cut and another two asymmetrically cut surfaces relative to the same atomic plane, maintaining cooling efficiency and the capability of quickly changing the reflection surface. With the asymmetric geometry, an X-ray flux greater than 1014 photons s−1 was available around 12 keV. A maximum gain of 2.5 was obtained relative to the standard symmetric condition.


Science ◽  
2019 ◽  
Vol 363 (6423) ◽  
pp. 145-148 ◽  
Author(s):  
K. Gopinadhan ◽  
S. Hu ◽  
A. Esfandiar ◽  
M. Lozada-Hidalgo ◽  
F. C. Wang ◽  
...  

It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na+and Cl−. Only protons (H+) can diffuse through monolayer water inside the capillaries. These observations improve our understanding of molecular transport at the atomic scale.


Sign in / Sign up

Export Citation Format

Share Document