Development and Validation of a Model of Uranium Release to Groundwater From Legacy Disposals at the UK Low Level Waste Repository

2008 ◽  
Vol 1107 ◽  
Author(s):  
J.S. Small ◽  
C. Lennon ◽  
S. Kwong ◽  
R.J. Scott

AbstractA previous radiological assessment of the UK Low Level Waste Repository (LLWR) has considered how the prevailing reducing chemical conditions in disposal trenches, may limit uranium release through the extreme low solubility of U(IV) solids. This study considers the additional effects that the physical and chemical nature of the uranium wastes may have on the release of uranium. Fluoride process residues produced by refining of uranium metal comprise the majority of the legacy inventory. Based on historic records and descriptions of the uranium wastes a conceptual model has been developed which bounds the release rate of uranium present as inclusions and dissolved in the solid residues by the dissolution rate of a magnesium fluoride matrix. The model is represented in a 3-dimensional groundwater flow and geochemical model. Initial findings indicate that the model correctly represents the range of fluoride and uranium concentrations that are measured in leachate from the LLWR trenches. Incorporation of this model in future safety assessments, together with a reduction in the derived inventory of uranium, is likely to result in a significant lowering of the peak groundwater dose to acceptable levels, even in the case that the site re-oxidizes. The study builds confidence in the inherent safety features that are provided by the sparingly soluble uranium waste residues and the reducing chemical conditions of the LLWR trenches.

Author(s):  
Tim. Hicks ◽  
Tamara Baldwin ◽  
Richard Cummings ◽  
Trevor Sumerling

The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste (LLW) to the Environment Agency on the 1st of May 2011. The Environmental Safety Case (ESC) presents a complete case for the environmental safety of the Low Level Waste Repository (LLWR) both during operations and in the long term (Cummings et al, in these proceedings). This includes an assessment of the long-term radiological safety of the facility, including an assessment of the potential consequences of human intrusion at the site. The human intrusion assessment is based on a cautiously realistic approach in defining intrusion cases and parameter values. A range of possible human intrusion events was considered based on present-day technologies and credible future uses of the site. This process resulted in the identification of geotechnical investigations, a housing development and a smallholding as requiring quantitative assessment. A particular feature of the site is that, because of its proximity to the coast and in view of expected global sea-level rise, it is vulnerable to coastal erosion. During such erosion, wastes and engineered barrier materials will be exposed, and could become targets for investigation or recovery. Therefore, human intrusion events have been included that are associated with such activities. A radiological assessment model has been developed to analyse the impacts of potential human intrusion at the site. A key feature of the model is the representation of the spatial layout of the disposal site, including the engineered cap design and the large-scale spatial heterogeneity of radionuclide concentrations within the repository. The model has been used to calculate the radiation dose to intruders and to others following intrusion at different times and at different locations across the site, for the each of the selected intrusion events, considering all relevant exposure modes. Potential doses due to radon and its daughters in buildings constructed on excavated spoil from the repository are a particular concern. Options for managing the emplacement of the radium-bearing waste packages with regard to human intrusion have been assessed. These calculations show that a managed waste emplacement strategy can ensure that calculated doses are consistent with regulatory guidance levels.


Author(s):  
C. G. Wilkins ◽  
E. Alvarez ◽  
J. Cocks ◽  
L. Davison ◽  
A. Mattinson

In the UK, low level radioactive waste (LLW) is sent to the national Low Level Waste Repository (LLWR) at Drigg in Cumbria. Strict rules limit the specific activity of waste that is sent to the LLW Repository and waste producers and consignors have to demonstrate that the waste they send to the repository meets its conditions for acceptance. However, the limited capacity of the Low Level Waste Repository means that it is just as important for waste consigners to ensure that inactive ‘free release’ or ‘exempt’ waste is not inadvertently sent to the repository. Incorrect segregation of waste in a decommissioning activity can mean that large amounts of the waste produced is below the exemption limit and could therefore be disposed of in conventional landfill. Sellafield Ltd. is using a pair of Canberra WM2750 Clearance Monitors to assay 100 litre packages of soft waste produced in some of their decommissioning activities at Sellafield. The WM2750 uses low resolution gamma spectrometry (LRGS) to determine the radionuclide content of packages or drums of LLW up to a maximum of 140 litre capacity. It uses a lead shielded measurement chamber to reduce the local radiation background along with high efficiency sodium iodide (NaI) detectors in order to obtain the measurement sensitivity required to be able to distinguish between LLW and exempt waste in a measurement time of less than 1 minute per package. This paper describes the waste monitoring process and the design of the clearance monitor — in particular how it was calibrated and the performance testing that was carried out to ensure that waste items identified by the monitors as being exempt waste are suitable for disposal to a conventional landfill site.


Author(s):  
Richard Cummings ◽  
Amy Huntington ◽  
John Shevelan ◽  
Andrew J. Baker ◽  
Trevor Sumerling ◽  
...  

The UK Low Level Waste Repository has submitted a fully revised Environmental Safety Case (ESC) to the Environment Agency for the continued operation of the site. The Environment Agency is reviewing the submission. As part of the review of the ESC, we have been engaging with the Environment Agency to answer questions and provide further clarification where required. Once the review is complete, LLWR will apply for a revised permit for the continued operation of the site. We are required by our current Permit to operate the site in accordance with the assumptions of the ESC. We have developed a process for the implementation and maintenance of the ESC as a ‘live’ safety case under formal change control, and the development of waste acceptance arrangements identified as necessary to ensure that the repository is operated in a safe and optimised way, consistent with the assumptions and results of the ESC. Engagement with waste consignors has been essential in the development of revised waste acceptance criteria. Additional work has also been carried out in the development of an Article 37 submission, presenting the ESC to local stakeholders and developing of waste emplacement strategies.


Author(s):  
John Shevelan ◽  
Nicholas T. Smith

The UK Low Level Waste Repository Ltd (LLWR) submitted an Environmental Safety Case (ESC) for the disposal of low-level waste (LLW) to the UK Environment Agency on the 1st of May 2011. As part of the ESC, the LLWR have to demonstrate that a programme of site investigation and site characterisation has been carried out to provide the requisite information for the ESC and support facility design and construction. This paper explains the development of the site investigation programme and how the understanding of the geology of the site has developed. The geological environment in the region of the LLWR consists of Quaternary age deposits overlying older bedrock. The site has been subjected to a series of site investigation programmes from 1939 to the present day. The development of 3-D geological models was necessary to integrate data from boreholes, trial pits, geophysical investigations and beach exposures and data gained from site operations. The understanding of the geology has developed with each new set of data. Early simple interpretations from a few boreholes have been superseded by a series of more complex interpretations each incorporating the increasingly detailed observations. Initial attempts to develop a lithostratigraphic representation of the geology proved difficult. It was also difficult provide a clear link between the geology and the hydrogeology using a lithostratigraphic approach as required for the development of hydrogeological models. A lithofacies approach to characterising the geology was adopted in 2007, which has allowed the grouping of geological units with similar hydraulic properties and the development of a regional 3-D geological model. The 3-D geological model has been used as the framework for the development of a hydrogeological model for the site. The development of the 3-D geological models has been iterative. It was observed that there are differences between models developed using solely mathematical interpolation and those controlled by geological interpretation. The different representations of the geological information have been used to consider the effects of uncertainty in the geological interpretation in the hydrogeological modelling.


Author(s):  
Martin Walkingshaw

The UK National Low Level Waste Repository (LLWR) is located near to the village of Drigg in West Cumbria. It is the principal site for disposal of solid Low Level Radioactive Waste (LLW) in the United Kingdom. This paper describes the program of work currently being undertaken by the site’s operators, (LLW Repository Ltd and its newly appointed Parent Body Organisation), to extend the life of the LLWR and reduce the overall cost of LLW management to the UK taxpayer. The current focus of this program is to prevent disposal capacity being taken up at LLWR by waste types which lend themselves to alternative treatment and/or disposition routes. The chosen approach enables consignors to segregate LLW at source into formats which allow further treatment for volume reduction or, (for wastes with lower levels of activity), consignment in the future to alternative disposal facilities. Segregated waste services are incorporated into LLW Disposal commercial agreements between the LLWR operator and waste consignors.


Author(s):  
Trevor Sumerling ◽  
Paul Fish ◽  
George Towler ◽  
James Penfold ◽  
John Shevelan ◽  
...  

The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste to our regulator, the Environment Agency, on the 1st of May 2011. This includes assessments of the long-term radiological safety of past and future disposals. A particular feature of the Low Level Waste Repository (LLWR) is that, because of its proximity to the coast, the site is vulnerable to coastal erosion. Our present understanding is that the site will be eroded on a timescale of a few hundred to a few thousand years, with consequent disruption of the repository, and dispersal of the wastes. We have undertaken a programme of scientific research and monitoring to characterise the evolution and function of the current coastal system that provides a basis for forecasting its future evolution. This has included modelling of contemporary hydrodynamics, geomorphological mapping, repeat LiDAR and aerial photographic surveys to detect patterns and rates of change, coastal inspections and reconstructions of post-glacial (i.e. last 15,000 years) sea levels and sediment budgets. Estimates of future sea-level rise have been derived from international sources and consideration given to the impact of such on the local coastline. Two alternative models of coastal recession have then been applied, one empirical and one physical-process based, taking account of the composition of Quaternary-age sediments between the coast and the site and uncertainties in future local sea level change. Comparison of the ranges of calculated times to site contact with sea-level rise indicate that the repository is most likely to be disrupted by undercutting of the engineered vaults and of the trenches. A novel and flexible radiological assessment model has been developed to analyse the impacts of the erosion of the repository and subsequent dispersal of wastes. The model represents the spatial layout of the site and distribution of radionuclides within the repository and is able to take account of a range of uncertainties. These include uncertainties related to the rate of erosion through the facility, amounts of co-erosion of geological and cap materials, alternative assumptions for residence of waste materials on the beach, alternative waste form associations, the wider dispersion of the eroded materials and marine sorption/desorption processes. Results indicate assessed annual doses and risks that are consistent with regulatory guidance levels.


1993 ◽  
Vol 265 (2) ◽  
pp. H543-H552 ◽  
Author(s):  
Y. Yuan ◽  
W. M. Chilian ◽  
H. J. Granger ◽  
D. C. Zawieja

This study reports measurements of albumin permeability in isolated coronary venules. The isolated microvessel technique allows the quantification of transmural exchange of macromolecules under tightly controlled physical and chemical conditions. Transvenular exchange of albumin was studied in isolated coronary venules during alterations in filtration rate caused by changes in intravascular pressure. The apparent permeability coefficient of albumin (Pa) at an intraluminal pressure of 11 cmH2O was 3.92 +/- 0.43 x 10(-6) cm/s. Elevating intraluminal pressure to 16 and 21 cmH2O increased Pa to 5.13 +/- 0.57 x 10(-6) and 6.78 +/- 0.66 x 10(-6) cm/s, respectively. Calculation of the true diffusive permeability coefficient of albumin (Pd) at zero filtration rate was 1.54 x 10(-6) cm/s. The product of hydraulic conductance (Lp) and (1 - sigma), where sigma is the solute reflection coefficient, was 3.25 x 10(-7) cm.s-1 x cmH2O-1. At a net filtration pressure of 4-5 cmH2O, diffusion accounts for > 60% of total albumin transport across the venular wall. Transmural albumin flux is very sensitive to filtration rate, rising 6.7% for each cmH2O elevation of net filtration pressure. At 11 cmH2O net filtration pressure, convection accounts for nearly 70% of net albumin extravasation from the venular lumen. We suggest that the isolated coronary venule is a suitable preparation for the study of solute exchange in the heart.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 539
Author(s):  
Benton C. Clark ◽  
Vera M. Kolb ◽  
Andrew Steele ◽  
Christopher H. House ◽  
Nina L. Lanza ◽  
...  

Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1291
Author(s):  
Seda Camalan ◽  
Hanya Mahmood ◽  
Hamidullah Binol ◽  
Anna Luiza Damaceno Araújo ◽  
Alan Roger Santos-Silva ◽  
...  

Oral cancer/oral squamous cell carcinoma is among the top ten most common cancers globally, with over 500,000 new cases and 350,000 associated deaths every year worldwide. There is a critical need for objective, novel technologies that facilitate early, accurate diagnosis. For this purpose, we have developed a method to classify images as “suspicious” and “normal” by performing transfer learning on Inception-ResNet-V2 and generated automated heat maps to highlight the region of the images most likely to be involved in decision making. We have tested the developed method’s feasibility on two independent datasets of clinical photographic images of 30 and 24 patients from the UK and Brazil, respectively. Both 10-fold cross-validation and leave-one-patient-out validation methods were performed to test the system, achieving accuracies of 73.6% (±19%) and 90.9% (±12%), F1-scores of 97.9% and 87.2%, and precision values of 95.4% and 99.3% at recall values of 100.0% and 81.1% on these two respective cohorts. This study presents several novel findings and approaches, namely the development and validation of our methods on two datasets collected in different countries showing that using patches instead of the whole lesion image leads to better performance and analyzing which regions of the images are predictive of the classes using class activation map analysis.


Sign in / Sign up

Export Citation Format

Share Document