Impact of Phase Stability on the Corrosion Behavior of the Austenitic Candidate Materials For NNSWI.

1987 ◽  
Vol 112 ◽  
Author(s):  
Daniel B. Bullen ◽  
Gregory E. Gdowski ◽  
R. Daniel McCright

AbstractThe Nuclear Waste Management Program at Lawrence Livermore National Laboratory is responsible for the development of the waste package design to meet the Nuclear Regulatory Commission licensing requirements for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The metallic container component of the waste package is required to assist in providing substantially complete containment of the waste for a period of up to 1000 years. Long term phase stability of the austenitic candidate materials (304L and 316L stainless steels and alloy 825) over this time period at moderate temperatures (100–250°C) can impact the mechanical and corrosion behavior of the metal barrier.A review of the technical literature with respect to phase stability of 304L, 316L and 825 is presented. The impact of martensitic transformations, carbide precipitation and intermediate (σ. χ, and η) phase formation on the mechanical properties and corrosion behavior of these alloys at repository relevant conditions is discussed. The effect of sensitization on intergranular stress corrosion cracking (IGSCC) of each alloy is also addressed. A summary of the impact of phase stability on the degradation of each alloy in the proposed repository environment is included.

1983 ◽  
Vol 26 ◽  
Author(s):  
E. W. yyRussell ◽  
R. D. McCright ◽  
W. C. O'Neal

ABSTRACTThe Nevada Nuclear Waste Storage Investigations (NNWSI) project under the Civilian Radioactive Waste Management Program is planning a repository at Yucca Mountain at the Nevada Test Site for isolation of high-level nuclear waste. Lawrence Livermore National Laboratory is developing designs for an engineered barrier system containing several barriers such as the waste form, a canister and/or an overpack, packing, and near field host rock. In this paper we address the selection of metal containment barriers.


Author(s):  
Randy J. James ◽  
Kenneth Jaquay ◽  
Michael J. Anderson

The proposed geologic repository under development at Yucca Mountain, Nevada, will employ multiple shell metallic containers (waste packages) for the disposal of nuclear waste. The waste packages represent a primary engineered barrier for protection and containment of the radioactive waste, and the design of these containers must consider a variety of structural conditions to insure structural integrity. Some of the more challenging conditions for structural integrity involve severe impact loading due to hypothesized event sequences, such as drops or collisions during transport and placement. Due to interactions between the various components leading to complex structural response during an impact sequence, nonlinear explicit dynamic simulations and highly refined models are employed to qualify the design for these severe impact loads. This paper summarizes the Design by Analysis methodologies employed for qualification of waste package design under impact loading and provides several illustrative examples using these methods. Example evaluations include a collision of a waste package by the Transport and Emplacement Vehicle (TEV) and two scenarios due to seismic events, including WP impact within the TEV and impact by falling rock. The examples are intended to illustrate the stringent Design by Analysis methods employed and also highlight the scope of structural conditions included in the design basis for waste packages to be used for proposed nuclear waste storage at Yucca Mountain.


1994 ◽  
Vol 353 ◽  
Author(s):  
William J. Weber ◽  
Rodney C. Ewing

AbstractSite restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at the same DOE facilities involve working with and within various types and levels of radiation fields. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance material properties. This paper reviews the impact of radiation fields on site restoration activities and on the release rate of radionuclides to the biosphere from nuclear waste forms.


2021 ◽  
pp. 0958305X2110513
Author(s):  
Adam J. Mallette ◽  
Aparajita Datta ◽  
Ramanan Krishnamoorti

Over the last 50 years, nuclear energy has reduced US energy-related CO2 emissions by over 30 gigatons compared to if the same electricity were produced by fossil fuels such as coal and natural gas. However, many kilotons of spent nuclear fuel have accumulated at different sites across the country, and sociopolitical factors have frustrated efforts to address the challenge of nuclear waste disposal. Presently, a consolidated interim storage facility in Andrews, Texas, provides a promising temporary solution. In this paper, we compare the technical and policy risks of the project to continued storage at independent spent fuel storage installations. Our results indicate that the cost of the radiological risk is low (<$30,000) for both scenarios. However, policy and societal considerations will impact the viability of the proposed consolidated interim storage facility. The safety and suitability of this interim storage facility will be affected by when a permanent repository becomes available, whether insurance for offsite waste storage is available, and the impact of climate risks. Although a consolidated interim storage facility at Andrews can potentially serve as a safe and economically advantageous solution, we highlight why these concerns must be addressed for the successful implementation of this facility, and more broadly for the future of the US nuclear industry.


2021 ◽  
Author(s):  
Herve Gross ◽  
Antoine Mazuyer

Abstract Evaluating large basin-scale formations for CO2 sequestration is one of the most important challenges for our industry. The technical complexity and the quantification of risks associated with these operations call for new reservoir engineering and reservoir simulation tools. The impact of multiple coupled physical phenomena, the century timescale, and basin-sized models in these operations force us to completely take apart and revisit the numerical backbone of existing simulation tools. We need a reservoir simulation tool designed for scalability and portability on high-performance computing architectures. To achieve this, we are proposing a new, open-source, multiphysics, and multilevel physics simulation tool called GEOSX. This tool is jointly created by Lawrence Livermore National Laboratory, Stanford University, and Total. It is designed for scalability on multiple CPUs and multiple GPUs and offers a suite of physical solvers that can be extended easily while achieving a balance between performance and portability. GEOSX is initially targeting multiphysics simulations with coupled geomechanics, flow, and transport mechanics but with its open architecture, it allows access to high-performance physical solvers as building blocks of other multiphysics problems and provides users with a suite of tools for numerical optimization across platforms. In this paper, we introduce GEOSX, expose its fundamental architecture principles, and show an example of geological sequestration of CO2 modeling on real data. We demonstrate our ability to simulate fluid and rock poromechanical interactions over long periods and basin-scale dimensions. GEOSX demonstrates its usefulness for such complex and large problems and proves to be scalable and portable across multiple high-performance systems.


Sign in / Sign up

Export Citation Format

Share Document